R. Bullingham, A. Nicholls, and B. Kamm, Clinical Pharmacokinetics of Mycophenolate Mofetil, Clinical Pharmacokinetics, vol.34, issue.6, pp.429-55, 1998.
DOI : 10.2165/00003088-199834060-00002

T. Fehrenbach, Y. Cui, H. Faulstich, and D. Keppler, Characterization of the transport of the bicyclic peptide phalloidin by human hepatic transport proteins, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.368, issue.5, pp.415-435, 2003.
DOI : 10.1007/s00210-003-0814-4

D. Hesselink, R. Van-hest, R. Mathot, F. Bonthuis, W. Weimar et al., Cyclosporine Interacts with Mycophenolic Acid by Inhibiting the Multidrug Resistance-Associated Protein 2, American Journal of Transplantation, vol.41, issue.1, pp.987-94, 2005.
DOI : 10.1046/j.1523-1755.2001.00782.x

G. Hubner, R. Eismann, and W. Sziegoleit, Drug Interaction Between Mycophenolate Mofetil and Tacrolimus Detectable Within Therapeutic Mycophenolic Acid Monitoring in Renal Transplant Patients, Therapeutic Drug Monitoring, vol.21, issue.5, pp.536-545, 1999.
DOI : 10.1097/00007691-199910000-00008

A. Cyclosporin, inhibits the biliary excretion of mycophenolic acid glucuronide possibly mediated by multidrug resistance-associated protein 2 in rats, J Pharmacol Exp Ther, vol.309, pp.1029-1064

W. Lemahieu, M. Hermann, A. Asberg, K. Verbeke, H. Holdaas et al., Combined Therapy with Atorvastatin and Calcineurin Inhibitors: No Interactions with Tacrolimus, American Journal of Transplantation, vol.13, issue.9, pp.2236-2279, 2005.
DOI : 10.1016/S1053-2498(01)00251-0

C. Patel, K. Ogasawara, and F. Akhlaghi, Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus, Xenobiotica, vol.26, issue.3, 2012.
DOI : 10.1124/dmd.105.006122

N. Picard, L. Levoir, F. Lamoureux, S. Yee, K. Giacomini et al., Interaction of sirolimus and everolimus with hepatic and intestinal organic anion-transporting polypeptide transporters, Xenobiotica, vol.45, issue.9, pp.752-759, 2011.
DOI : 10.1200/JCO.2009.24.2669

URL : https://hal.archives-ouvertes.fr/inserm-00926385

N. Picard, S. Yee, J. Woillard, Y. Lebranchu, L. Meur et al., The Role of Organic Anion???Transporting Polypeptides and Their Common Genetic Variants in Mycophenolic Acid Pharmacokinetics, Clinical Pharmacology & Therapeutics, vol.87, issue.1, pp.100-108, 2010.
DOI : 10.1086/379378

URL : https://hal.archives-ouvertes.fr/inserm-00415314

L. Pou, M. Brunet, C. Cantarell, E. Vidal, F. Oppenheimer et al., Mycophenolic Acid Plasma Concentrations: Influence of Comedication, Therapeutic Drug Monitoring, vol.23, issue.1, pp.35-43, 2001.
DOI : 10.1097/00007691-200102000-00007

T. Schaub, J. Kartenbeck, J. Konig, H. Spring, J. Dorsam et al., Expression of the MRP2 gene-encoded conjugate export pump in human kidney proximal tubules and in renal cell carcinoma, J Am Soc Nephrol, vol.10, pp.1159-69, 1999.

Y. Shitara, T. Itoh, H. Sato, A. Li, and Y. Sugiyama, Inhibition of Transporter-Mediated Hepatic Uptake as a Mechanism for Drug-Drug Interaction between Cerivastatin and Cyclosporin A, Journal of Pharmacology and Experimental Therapeutics, vol.304, issue.2, pp.610-616, 2003.
DOI : 10.1124/jpet.102.041921

Y. Shitara, K. Takeuchi, Y. Nagamatsu, S. Wada, Y. Sugiyama et al., Long-lasting Inhibitory Effects of Cyclosporin A, but Not Tacrolimus, on OATP1B1- and OATP1B3-mediated Uptake, Drug Metabolism and Pharmacokinetics, vol.27, issue.4, 2012.
DOI : 10.2133/dmpk.DMPK-11-RG-096

S. Gregoor, P. Van-gelder, T. Hesse, C. Van-der-mast, B. Van-besouw et al., Mycophenolic acid plasma concentrations in kidney allograft recipients with or without cyclosporin: a cross-sectional study, Nephrology Dialysis Transplantation, vol.14, issue.3, pp.706-714, 1999.
DOI : 10.1093/ndt/14.3.706

A. Treiber, R. Schneiter, S. Hausler, and B. Stieger, Bosentan Is a Substrate of Human OATP1B1 and OATP1B3: Inhibition of Hepatic Uptake as the Common Mechanism of Its Interactions with Cyclosporin A, Rifampicin, and Sildenafil, Drug Metabolism and Disposition, vol.35, issue.8, pp.1400-1407, 2007.
DOI : 10.1124/dmd.106.013615

Y. Uwai, H. Motohashi, Y. Tsuji, H. Ueo, T. Katsura et al., Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3, Biochemical Pharmacology, vol.74, issue.1, pp.161-169, 2007.
DOI : 10.1016/j.bcp.2007.03.024

T. Van-gelder, J. Klupp, M. Barten, U. Christians, and R. Morris, Comparison of the Effects of Tacrolimus and Cyclosporine on the Pharmacokinetics of Mycophenolic Acid, Therapeutic Drug Monitoring, vol.23, issue.2, pp.119-147, 2001.
DOI : 10.1097/00007691-200104000-00005

I. Westley, L. Brogan, R. Morris, A. Evans, and B. Sallustio, ROLE OF MRP2 IN THE HEPATIC DISPOSITION OF MYCOPHENOLIC ACID AND ITS GLUCURONIDE METABOLITES: EFFECT OF CYCLOSPORINE, Drug Metabolism and Disposition, vol.34, issue.2, pp.261-267, 2006.
DOI : 10.1124/dmd.105.006122

K. Zucker, A. Rosen, A. Tsaroucha, L. De-faria, D. Roth et al., Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings, Transplant Immunology, vol.5, issue.3, pp.225-257, 1997.
DOI : 10.1016/S0966-3274(97)80042-1

. Bullingham, Figure 1: proposed pathways for MPA hepatic disposition and enterohepatic cycling, and mechanism for its interaction with cyclosporine. The figure is based on evidence provided by the literature, 1998.