J. Lopez-miranda, C. Williams, and D. Lairon, Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism, British Journal of Nutrition, vol.46, issue.03, pp.458-73, 2007.
DOI : 10.1016/S0895-7061(01)02141-0

B. Nordestgaard, M. Benn, P. Schnohr, and A. Tybjaerg-hansen, Nonfasting Triglycerides and Risk of Myocardial Infarction, Ischemic Heart Disease, and Death in Men and Women, JAMA, vol.298, issue.3, pp.299-308, 2007.
DOI : 10.1001/jama.298.3.299

M. Chapman, H. Ginsberg, P. Amarenco, F. Andreotti, J. Boren et al., Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management, European Heart Journal, vol.32, issue.11, pp.1345-61, 2011.
DOI : 10.1093/eurheartj/ehr112

F. Maggi, S. Raselli, L. Grigore, L. Redaelli, S. Fantappie et al., Lipoprotein Remnants and Endothelial Dysfunction in the Postprandial Phase, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.6, pp.2946-50, 2004.
DOI : 10.1210/jc.2003-031977

R. Chavez-jauregui, R. Mattes, and E. Parks, Dynamics of Fat Absorption and Effect of Sham Feeding on Postprandial Lipema, Gastroenterology, vol.139, issue.5, pp.1538-1586, 2010.
DOI : 10.1053/j.gastro.2010.05.002

S. Sakr, N. Attia, M. Haourigui, J. Paul, T. Soni et al., Fatty acid composition of an oral load affects chylomicron size in human subjects, British Journal of Nutrition, vol.12, issue.01, pp.19-31, 1997.
DOI : 10.1111/j.1365-2362.1991.tb01809.x

H. Lai and D. Ney, Gastric digestion modifies absorption of butterfat into lymph chylomicrons in rats, J Nutr, vol.128, issue.12, pp.2403-2413, 1998.

F. Renner, A. Samuelson, M. Rogers, and R. Glickman, Effect of saturated and unsaturated lipid on the composition of mesenteric triglyceride-rich lipoproteins in the rat, J Lipid Res, vol.27, issue.1, pp.72-81, 1986.

E. Feldman, B. Russell, C. Hawkins, and T. Forte, Intestinal lymph lipoproteins in rats fed diets enriched in specific fatty acids, J Nutr, vol.113, issue.11, pp.2323-2357, 1983.

C. Xiao and G. Lewis, Regulation of chylomicron production in humans, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1821, issue.5, pp.736-782, 2012.
DOI : 10.1016/j.bbalip.2011.09.019

W. Willett, J. Manson, and S. Liu, Glycemic index, glycemic load, and risk of type 2 diabetes, Am J Clin Nutr, vol.76, issue.1, pp.274-80, 2002.

S. Hur, A. Decker, and D. Mcclements, Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion, Food Chemistry, vol.114, issue.1, pp.253-62, 2009.
DOI : 10.1016/j.foodchem.2008.09.069

M. Michalski, A. Soares, C. Lopez, N. Leconte, V. Briard et al., The supramolecular structure of milk fat influences plasma triacylglycerols and fatty acid profile in the rat, European Journal of Nutrition, vol.85, issue.4, pp.215-239, 2006.
DOI : 10.1007/s00394-006-0588-9

URL : https://hal.archives-ouvertes.fr/hal-01453926

M. Michalski, V. Briard, M. Desage, and A. Geloen, The dispersion state of milk fat influences triglyceride metabolism in the rat, European Journal of Nutrition, vol.90, issue.7, pp.436-480, 2005.
DOI : 10.1007/s00394-005-0551-1

F. Laugerette, C. Vors, A. Geloen, M. Chauvin, C. Soulage et al., Emulsified lipids increase endotoxemia: possible role in early postprandial low-grade inflammation, The Journal of Nutritional Biochemistry, vol.22, issue.1, 2011.
DOI : 10.1016/j.jnutbio.2009.11.011

URL : https://hal.archives-ouvertes.fr/inserm-00486697

S. Mcquaid, L. Hodson, M. Neville, A. Dennis, J. Cheeseman et al., Downregulation of Adipose Tissue Fatty Acid Trafficking in Obesity: A Driver for Ectopic Fat Deposition?, Diabetes, vol.60, issue.1, pp.47-55, 2011.
DOI : 10.2337/db10-0867

M. Armand, B. Pasquier, M. Andre, P. Borel, M. Senft et al., Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract, Am J Clin Nutr, vol.70, issue.6, pp.1096-106, 1999.

C. Binnert, C. Pachiaudi, M. Beylot, D. Hans, J. Vandermander et al., Influence of human obesity on the metabolic fate of dietary long-and medium-chain triacylglycerols, Am J Clin Nutr, vol.67, issue.4, pp.595-601, 1998.

E. Ferrannini, The theoretical bases of indirect calorimetry: A review, Metabolism, vol.37, issue.3, pp.287-301, 1988.
DOI : 10.1016/0026-0495(88)90110-2

M. Hussain, M. Kedees, K. Singh, H. Athar, and N. Jamali, Signposts in the assembly of chylomicrons, Frontiers in Bioscience, vol.6, issue.3, pp.320-351, 2001.
DOI : 10.2741/A613

J. Pang, D. Chan, P. Barrett, G. Watts, J. Su et al., Postprandial dyslipidaemia and diabetes, Current Opinion in Lipidology, vol.23, issue.4, pp.303-9741, 2009.
DOI : 10.1097/MOL.0b013e328354c790

C. Dubois, G. Beaumier, C. Juhel, A. M. Portugal, H. Pauli et al., Effects of graded amounts (0-50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults, Am J Clin Nutr, vol.67, issue.1, pp.31-39, 1998.

L. Gabert, C. Vors, C. Louche-pelissier, V. Sauvinet, S. Lambert-porcheron et al., 13C tracer recovery in human stools after digestion of a fat-rich meal labelled with [1,1,1-13C3]tripalmitin and [1,1,1- 13C3]triolein A simple method for the isolation and purification of total lipides from animal tissues, Rapid Commun Mass Spectrom J Biol Chem, vol.25226, issue.1, pp.2697-703497, 1957.

E. Antoun, I. Momken, A. Bergouignan, C. Villars, C. Platat et al., The [1-13C]acetate recovery factor to correct tracer-derived dietary fat oxidation is lower in overweight insulin-resistant subjects. The European e, Journal of Clinical Nutrition and Metabolism, vol.5, issue.4, pp.173-182, 2010.

I. Garaiova, I. Guschina, S. Plummer, J. Tang, D. Wang et al., A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification, Nutrition Journal, vol.71, issue.2, pp.4-10, 2007.
DOI : 10.1194/jlr.M200282-JLR200

L. Couedelo, C. Boue-vaysse, L. Fonseca, E. Montesinos, S. Djoukitch et al., Lymphatic absorption of ??-linolenic acid in rats fed flaxseed oil-based emulsion, British Journal of Nutrition, vol.60, issue.07, pp.1026-1061, 2011.
DOI : 10.1016/j.idairyj.2006.06.015

V. Delorme, R. Dhouib, S. Canaan, F. Fotiadu, F. Carriere et al., Effects of Surfactants on Lipase Structure, Activity, and Inhibition, Pharmaceutical Research, vol.41, issue.2, pp.1831-1873, 2011.
DOI : 10.1007/s11095-010-0362-9

P. Martins, P. Neuhaus, J. Keogh, T. Wooster, M. Golding et al., Surgical Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differentially absorbed and metabolized in humans Coupling in vitro gastrointestinal lipolysis and Caco-2 cell cultures for testing the absorption of different food emulsions, Liver Int J Nutr Food Funct, vol.271413, issue.355, pp.384-92537, 1039.

F. Karpe, T. Olivecrona, A. Hamsten, M. Hultin, Y. Fukuchi et al., Chylomicron/chylomicron remnant turnover in humans: evidence for margination of chylomicrons and poor conversion of larger to smaller chylomicron remnants Delayed postprandial metabolism of triglyceride-rich lipoproteins in obese young men compared to lean young men, J Lipid Res Nabeno-Kaeriyama Y Clin Chim Acta, vol.38411, issue.34, pp.949-6121, 1997.

O. Wisen and C. Johansson, Gastrointestinal function in obesity: Motility, secretion, and absorption following a liquid test meal, Metabolism, vol.41, issue.4, pp.390-395, 1992.
DOI : 10.1016/0026-0495(92)90073-J

L. Marciani, M. Wickham, G. Singh, D. Bush, B. Pick et al., Enhancement of intragastric acid stability of a fat emulsion meal delays gastric emptying and increases cholecystokinin release and gallbladder contraction, AJP: Gastrointestinal and Liver Physiology, vol.292, issue.6, pp.1607-1620, 2006.
DOI : 10.1152/ajpgi.00452.2006

L. Marciani, R. Faulks, M. Wickham, D. Bush, B. Pick et al., Effect of intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postprandial satiety, Meal ingestion provokes entry of lipoproteins containing fat from the previous meal: possible metabolic implications, pp.919-947, 2009.
DOI : 10.1046/j.1365-2982.1997.d01-6.x

M. Michalski, Specific molecular and colloidal structures of milk fat affecting lipolysis, absorption and postprandial lipemia, European Journal of Lipid Science and Technology, vol.87, issue.5, pp.413-444, 2009.
DOI : 10.1002/ejlt.200800254

Y. Schutz, J. Flatt, and E. Jequier, Failure of dietary fat intake to promote fat oxidation: a factor favoring the development of obesity, Am J Clin Nutr, vol.50, issue.2, pp.307-321, 1989.

R. Giacco, G. Clemente, L. Busiello, G. Lasorella, A. Rivieccio et al., Insulin sensitivity is increased and fat oxidation after a high-fat meal is reduced in normal-weight healthy men with strong familial predisposition to overweight, International Journal of Obesity, vol.28, issue.2, pp.342-350, 2004.
DOI : 10.1038/sj.ijo.0802589

D. Bessesen, C. Rupp, and R. Eckel, Dietary Fat Is Shunted Away from Oxidation, Toward Storage in Obese Zucker Rats, Obesity Research, vol.259, issue.12, pp.179-89, 1995.
DOI : 10.1002/j.1550-8528.1995.tb00134.x

L. Hodson, S. Mcquaid, S. Humphreys, R. Milne, B. Fielding et al., Greater dietary fat oxidation in obese compared with lean men: an adaptive mechanism to prevent liver fat accumulation?, AJP: Endocrinology and Metabolism, vol.299, issue.4, pp.584-92, 2010.
DOI : 10.1152/ajpendo.00272.2010

B. Fielding, Tracing the fate of dietary fatty acids: metabolic studies of postprandial lipaemia in human subjects, Proceedings of the Nutrition Society, vol.63, issue.03, pp.342-50, 2011.
DOI : 10.1017/S0007114500000982

J. Halford, J. Harrold, J. Parker, J. Plumer, S. Bloom et al., Satiety-enhancing products for appetite control: science and regulation of functional foods for weight management, Proceedings of the Nutrition Society, vol.9, issue.02, pp.350-62209, 2012.
DOI : 10.1007/s00394-010-0131-x

(. Time, P meal and P timexmeal for postprandial period from 0 to 300 min

(. P<, 05 for obese iAUC 0-300 min emulsion vs spread fat (paired Student's t-test), § P< 0.05 for spread fat iAUC 0-300 min obese vs NW subjects (unpaired Student's t-test

$. P<, 1 for obese iAUC 0-480 min emulsion vs spread fat (paired Student's t-test)

*. P<, 05 for obese iAUC 0-300 min emulsion vs spread fat (paired Student's t-test), § P< 0.05 for spread fat iAUC 0-300 min obese vs NW subjects (unpaired Student's t-test); (E) no common letter with another bar indicates a statistical difference

. (. P<, 01 for NW subjects at 120 min emulsion vs spread fat (paired Student's t-test)

(. P<, 05 for NW subjects at 120 min emulsion vs spread fat (paired Student's t-test)