Additional_method_file_2

Risk that a sbsRT matches by chance the RT of a transcript

In order to compute frequencies of SBS, a sbsRT must be specific to a unique RT. Here we calculated the risk that a sbsRT matches the RT of a transcript. A random 17 base string can generate $4^{17}=17.2$ $\times 10^{9}$ distinct sequences. Assuming 22,000 genes on the human genome and a 1 to 1 gene $<->$ tag association, a repertoire of 22,000 ET would be created (without taking into account mRNA 3^{\prime} alternative splicing, alternative 3^{\prime} poly-adenylation or redundance of ET associated with distinct genes). The probability that a random 17 base string matches the ET of a human transcript is thus $p=$ $22.000 /\left(17.2 \times 10^{9}\right)=1.28 \times 10^{-6}$. A 17 base tag, which is the signature of a transcript, can generate 3 $x 17=51$ distinct sequences by SBS. The probability P that "At least 1 of the 51 tag resulting from SBS matches the tag of a transcript" is equal to 1 minus the probability of the complementary event, i.e. "none of the 51 tags matches the tag of a transcript" or 0 success in 51 identical and independent trials, thus P is given by a binomially distributed random variable, $B(51, p) \cdot P=1-\left({ }_{0}^{51}\right) \cdot p^{0}$. (1-p) $51-0=6.5 \times 10^{-5}$. This risk is thus very low, and we can trust that a sbsRT is specific to a unique RT.

