A. Aliverti, L. Piubelli, G. Zanetti, T. Lübberstedt, R. G. Herrmann et al., The role of cysteine residues of spinach ferredoxin-NADP+ reductase as assessed by site-directed mutagenesis, Biochemistry, vol.32, issue.25, pp.6374-6380, 1993.
DOI : 10.1021/bi00076a010

T. Kawahara, M. T. Quinn, and J. D. Lambeth, Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes, BMC Evolutionary Biology, vol.7, issue.1, p.109, 2007.
DOI : 10.1186/1471-2148-7-109

H. Sumimoto, Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species, FEBS Journal, vol.19, issue.13, pp.3249-3277, 2008.
DOI : 10.1111/j.1742-4658.2008.06488.x

K. Bedard and K. H. Krause, The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology, Physiological Reviews, vol.87, issue.1, pp.245-313, 2007.
DOI : 10.1152/physrev.00044.2005

V. Jaquet, L. Scapozza, R. A. Clark, K. H. Krause, and J. D. Lambeth, Small-Molecule NOX Inhibitors: ROS-Generating NADPH Oxidases as Therapeutic Targets, Antioxidants & Redox Signaling, vol.11, issue.10, pp.2535-2552, 2009.
DOI : 10.1089/ars.2009.2585

A. W. Segal, I. West, F. Wientjes, J. H. Nugent, A. J. Chavan et al., is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes, Biochemical Journal, vol.284, issue.3, pp.781-788, 1992.
DOI : 10.1042/bj2840781

D. Rotrosen, C. L. Yeung, T. L. Leto, H. L. Malech, and C. H. Kwong, Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase, Science, vol.256, issue.5062, pp.1459-1462, 1992.
DOI : 10.1126/science.1318579

H. Sumimoto, N. Sakamoto, M. Nozaki, Y. Sakaki, K. Takeshige et al., Cytochrome b558, a component of the phagocyte NADPH oxidase, is a flavoprotein, Biochemical and Biophysical Research Communications, vol.186, issue.3, pp.1368-1375, 1992.
DOI : 10.1016/S0006-291X(05)81557-8

A. Poinas, J. Gaillard, P. Vignais, and J. Doussiere, Exploration of the diaphorase activity of neutrophil NADPH oxidase, European Journal of Biochemistry, vol.1319, issue.4, pp.1243-1252, 2002.
DOI : 10.1046/j.1432-1033.2002.02764.x

W. R. Taylor, D. T. Jones, and A. W. Segal, ??-chain, Protein Science, vol.84, issue.10, pp.1675-1685, 1993.
DOI : 10.1002/pro.5560021013

X. J. Li, D. Grunwald, J. Mathieu, F. Morel, S. et al., Crucial Role of Two Potential Cytosolic Regions of Nox2, 191TSSTKTIRRS200 and 484DESQANHFAVHHDEEKD500, on NADPH Oxidase Activation, Journal of Biological Chemistry, vol.280, issue.15, pp.14962-14973, 2005.
DOI : 10.1074/jbc.M500226200

URL : https://hal.archives-ouvertes.fr/hal-00382074

L. Zhen, L. Yu, and M. C. Dinauer, Probing the Role of the Carboxyl Terminus of the gp91phox Subunit of Neutrophil Flavocytochrome b558 using Site-directed Mutagenesis, Journal of Biological Chemistry, vol.273, issue.11, pp.6575-6581, 1998.
DOI : 10.1074/jbc.273.11.6575

L. S. Yoshida, F. Saruta, K. Yoshikawa, O. Tatsuzawa, and S. Tsunawaki, Mutation at Histidine 338 of gp91phox Depletes FAD and Affects Expression of Cytochrome b 558 of the Human NADPH Oxidase, Journal of Biological Chemistry, vol.273, issue.43, pp.27879-27886, 1998.
DOI : 10.1074/jbc.273.43.27879

X. J. Li, F. Fieschi, M. H. Paclet, D. Grunwald, Y. Campion et al., Leu505 of Nox2 is crucial for optimal p67phox-dependent activation of the flavocytochrome b558 during phagocytic NADPH oxidase assembly, Journal of Leukocyte Biology, vol.81, issue.1, pp.238-249, 2007.
DOI : 10.1189/jlb.0905541

URL : https://hal.archives-ouvertes.fr/hal-00382255

L. M. Henderson, Role of Histidines Identified by Mutagenesis in the NADPH Oxidase-associated H+ Channel, Journal of Biological Chemistry, vol.273, issue.50, pp.33216-33223, 1998.
DOI : 10.1074/jbc.273.50.33216

T. M. Wallach and A. W. Segal, Analysis of glycosylation sites on gp91phox, the flavocytochrome of the NADPH oxidase, by site-directed mutagenesis and translation in vitro, Biochemical Journal, vol.321, issue.3, pp.583-585, 1997.
DOI : 10.1042/bj3210583

K. J. Biberstine-kinkade, L. Yu, and M. C. Dinauer, Mutagenesis of an Arginine- and Lysine-rich Domain in the gp91phox Subunit of the Phagocyte NADPH-oxidase Flavocytochromeb 558, Journal of Biological Chemistry, vol.274, issue.15, pp.10451-10457, 1999.
DOI : 10.1074/jbc.274.15.10451

K. Von-löhneysen, D. Noack, M. R. Wood, J. S. Friedman, and U. G. Knaus, Structural Insights into Nox4 and Nox2: Motifs Involved in Function and Cellular Localization, Molecular and Cellular Biology, vol.30, issue.4, pp.961-975, 2010.
DOI : 10.1128/MCB.01393-09

H. M. Jackson, T. Kawahara, Y. Nisimoto, S. M. Smith, and J. D. Lambeth, Nox4 B-loop Creates an Interface between the Transmembrane and Dehydrogenase Domains, Journal of Biological Chemistry, vol.285, issue.14, pp.10281-10290, 2010.
DOI : 10.1074/jbc.M109.084939

J. M. Van-den-berg, E. Van-koppen, A. Ahlin, B. H. Belohradsky, E. Bernatowska et al., Chronic Granulomatous Disease: The European Experience, PLoS ONE, vol.8, issue.4, p.5234, 2009.
DOI : 10.1371/journal.pone.0005234.t017

URL : https://hal.archives-ouvertes.fr/hal-00382226

M. J. Stasia, L. , and X. J. , Genetics and immunopathology of chronic granulomatous disease, Seminars in Immunopathology, vol.35, issue.Suppl 1, pp.209-235, 2008.
DOI : 10.1007/s00281-008-0121-8

URL : https://hal.archives-ouvertes.fr/hal-00382245

D. Roos, D. B. Kuhns, A. Maddalena, J. Roesler, J. A. Lopez et al., Hematologically important mutations: X-linked chronic granulomatous disease (third update), Blood Cells, Molecules, and Diseases, vol.45, issue.3, pp.246-265, 2010.
DOI : 10.1016/j.bcmd.2010.07.012

URL : https://hal.archives-ouvertes.fr/hal-00809510

A. R. Cross, P. G. Heyworth, J. Rae, C. , and J. T. , A Variant X-linked Chronic Granulomatous Disease Patient (X91+) with Partially Functional Cytochrome b, Journal of Biological Chemistry, vol.270, issue.14, pp.8194-8200, 1995.
DOI : 10.1074/jbc.270.14.8194

L. Zhen, A. A. King, Y. Xiao, S. J. Chanock, S. H. Orkin et al., Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox., Proceedings of the National Academy of Sciences, vol.90, issue.21, pp.9832-9836, 1993.
DOI : 10.1073/pnas.90.21.9832

C. I. Lord, M. H. Riesselman, J. M. Gripentrog, J. B. Burritt, A. J. Jesaitis et al., Single-step immunoaffinity purification and functional reconstitution of human phagocyte flavocytochrome b, Journal of Immunological Methods, vol.329, issue.1-2, pp.201-207, 2008.
DOI : 10.1016/j.jim.2007.10.008

F. Debeurme, A. Picciocchi, M. C. Dagher, D. Grunwald, S. Beaumel et al., Regulation of NADPH Oxidase Activity in Phagocytes: RELATIONSHIP BETWEEN FAD/NADPH BINDING AND OXIDASE COMPLEX ASSEMBLY, Journal of Biological Chemistry, vol.285, issue.43, pp.33197-33208, 2010.
DOI : 10.1074/jbc.M110.151555

URL : https://hal.archives-ouvertes.fr/inserm-00763398

L. Cohen-tanugi, F. Morel, M. C. Pilloud-dagher, J. M. Seigneurin, P. Francois et al., Activation of O2--generating oxidase in an heterologous cell-free system derived from Epstein-Barr-virus-transformed human B lymphocytes and bovine neutrophils. Application to the study of defects in cytosolic factors in chronic granulomatous disease, European Journal of Biochemistry, vol.265, issue.2, pp.649-655, 1991.
DOI : 10.1016/0006-291X(89)90063-6

URL : https://hal.archives-ouvertes.fr/hal-00820807

M. J. Stasia, B. Lardy, A. Maturana, P. Rousseau, C. Martel et al., Molecular and functional characterization of a new X-linked chronic granulomatous disease variant (X91+) case with a double missense mutation in the cytosolic gp91phox C-terminal tail, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1586, issue.3, pp.316-330, 2002.
DOI : 10.1016/S0925-4439(01)00110-7

D. Baniulis, Y. Nakano, W. M. Nauseef, B. Banfi, G. Cheng et al., Evaluation of two anti-gp91phox antibodies as immunoprobes for Nox family proteins: mAb 54.1 recognizes recombinant full-length Nox2, Nox3 and the C-terminal domains of Nox1-4 and cross-reacts with GRP 58, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1752, issue.2, pp.186-196, 2005.
DOI : 10.1016/j.bbapap.2005.07.018

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

J. B. Burritt, M. T. Quinn, M. A. Jutila, C. W. Bond, and A. J. Jesaitis, Topological Mapping of Neutrophil Cytochrome b Epitopes with Phage-display Libraries, Journal of Biological Chemistry, vol.270, issue.28, pp.16974-16980, 1995.
DOI : 10.1074/jbc.270.28.16974

M. H. Paclet, L. M. Henderson, Y. Campion, F. Morel, and M. C. Dagher, Localization of Nox2 N-terminus using polyclonal antipeptide antibodies, Biochemical Journal, vol.382, issue.3, pp.981-986, 2004.
DOI : 10.1042/BJ20040954

URL : https://hal.archives-ouvertes.fr/hal-00820738

G. Csanyi, E. Cifuentes-pagano, A. Ghouleh, I. Ranayhossaini, D. J. Egana et al., Free Radic, Biol. Med, 2011.

N. B. Calcaterra, G. A. Picó, E. G. Orellano, J. Ottado, N. Carrillo et al., Contribution of the FAD binding site residue tyrosine 308 to the stability of pea ferredoxin-NADP+ oxidoreductase, Biochemistry, vol.34, issue.39, pp.12842-12848, 1995.
DOI : 10.1021/bi00039a045