W. Hahn and R. Weinberg, Rules for Making Human Tumor Cells, New England Journal of Medicine, vol.347, issue.20, pp.1593-603, 2002.
DOI : 10.1056/NEJMra021902

B. Vogelstein and K. Kinzler, Cancer genes and the pathways they control, Nature Medicine, vol.1, issue.8, pp.789-99, 2004.
DOI : 10.1038/sj.onc.1207130

S. Baylin, DNA methylation and gene silencing in cancer, Nature Clinical Practice Oncology, vol.249, issue.1, pp.4-11, 2005.
DOI : 10.1038/ncponc0354

Y. Kondo, Epigenetic Cross-Talk between DNA Methylation and Histone Modifications in Human Cancers, Yonsei Medical Journal, vol.50, issue.4, pp.455-63, 2009.
DOI : 10.3349/ymj.2009.50.4.455

J. Issa, DNA Methylation as a Therapeutic Target in Cancer, Clinical Cancer Research, vol.13, issue.6, pp.1634-1641, 2007.
DOI : 10.1158/1078-0432.CCR-06-2076

Y. Oki, J. Jelinek, L. Shen, H. Kantarjian, J. Issa et al., Induction of hypomethylation and molecular response after decitabine therapy in patients with chronic myelomonocytic leukemia The potential role of epigenetic therapy in multiple myeloma Molecular pathogenesis and a consequent classification of multiple myeloma Advances in biology of multiple myeloma: clinical applications, Blood. Br J Haematol. J Clin Oncol. Blood, vol.11123104, issue.10, pp.2382-46333, 2004.

G. Chen, Y. Wang, H. Huang, F. Lin, D. Wu et al., Combination of DNA methylation inhibitor 5-azacytidine and arsenic trioxide has synergistic activity in myeloma TGFbetaR2 aberrant methylation is a potential prognostic marker and therapeutic target in multiple myeloma, Eur J Haematol. Int J Cancer, vol.82125, issue.12, pp.176-831985, 2009.

O. Galm, H. Yoshikawa, M. Esteller, R. Osieka, and J. Herman, SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma, Blood, vol.101, issue.7, pp.2784-2792, 2003.
DOI : 10.1182/blood-2002-06-1735

E. Hatzimichael, G. Dranitsaris, A. Dasoula, L. Benetatos, J. Stebbing et al., von Hippel???Lindau Methylation Status in Patients with Multiple Myeloma: A Potential Predictive Factor for the Development of Bone Disease, Clinical Lymphoma and Myeloma, vol.9, issue.3, pp.239-281, 2009.
DOI : 10.3816/CLM.2009.n.047

D. Hodge, B. Peng, J. Cherry, E. Hurt, S. Fox et al., Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation Frequent hypermethylation of p16 and p15 genes in multiple myeloma, Cancer Res. Blood, vol.6589, issue.16, pp.4673-822500, 1997.

M. Tshuikina, H. Jernberg-wiklund, K. Nilsson, and F. Oberg, Epigenetic silencing of the interferon regulatory factor ICSBP/IRF8 in human multiple myeloma, Experimental Hematology, vol.36, issue.12, pp.1673-81, 2008.
DOI : 10.1016/j.exphem.2008.08.001

S. Wilop, T. Van-gemmeren, M. Lentjes, M. Van-engeland, J. Herman et al., Methylation-associated dysregulation of the suppressor of cytokine signaling-3 gene in multiple myeloma Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma, Genome Cancer Res. Epigenetics. Blood, vol.686, issue.21, pp.44-541047, 2008.

J. Moreaux, B. Klein, R. Bataille, G. Descamps, S. Maiga et al., A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines, Haematologica, vol.96, issue.4, pp.574-82, 2011.
DOI : 10.3324/haematol.2010.033456

URL : https://hal.archives-ouvertes.fr/inserm-00550232

C. Rebouissou, J. Wijdenes, P. Autissier, K. Tarte, V. Costes et al., A gp130 interleukin-6 transducer-dependent SCID model of human multiple myeloma, Blood, vol.91, pp.4727-4764, 1998.

K. Tarte, X. Zhang, E. Legouffe, C. Hertog, M. Mehtali et al., Induced expression of B7-1 on myeloma cells following retroviral gene transfer results in tumor-specific recognition by cytotoxic T cells, J Immunol, vol.163, pp.514-538, 1999.

Z. Gu, J. Vos, C. Rebouissou, J. M. Zhang, X. Rossi et al., Agonist anti-gp130 transducer monoclonal antibodies are human myeloma cell survival and growth factors Joint HOVON-50/GMMG-HD3 randomized trial on the effect of thalidomide as part of a high-dose therapy regimen and as maintenance treatment for newly diagnosed myeloma patients, Leukemia. Ann Hematol, vol.1482, issue.27, pp.188-97654, 2000.

F. Cremer, J. Bila, I. Buck, M. Kartal, D. Hose et al., Delineation of distinct subgroups of multiple myeloma and a model for clonal evolution based on interphase cytogenetics, Genes, Chromosomes and Cancer, vol.40, issue.2, pp.194-203, 2005.
DOI : 10.1002/gcc.20231

B. Barlogie, G. Tricot, E. Rasmussen, E. Anaissie, F. Van-rhee et al., Total therapy 2 without thalidomide in comparison with total therapy 1: role of intensified induction and posttransplantation consolidation therapies, Blood, vol.107, issue.7, pp.2633-2641, 2006.
DOI : 10.1182/blood-2005-10-4084

A. Sprynski, D. Hose, L. Caillot, T. Reme, J. Shaughnessy et al., The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma, Blood. Blood, vol.113112, issue.31, pp.4614-264235, 2008.

K. Mahtouk, J. M. , D. Vos, J. Hertogh, C. Fiol et al., An inhibitor of the EGF receptor family blocks myeloma cell growth factor activity of HB-EGF and potentiates dexamethasone or anti-IL-6 antibody-induced apoptosis, Blood, vol.103, issue.5, pp.1829-1866, 2004.
DOI : 10.1182/blood-2003-05-1510

URL : https://hal.archives-ouvertes.fr/inserm-00130207

J. Moreaux, F. Cremer, T. Reme, M. Raab, K. Mahtouk et al., The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature, Blood, vol.106, issue.3, pp.1021-1051, 2005.
DOI : 10.1182/blood-2004-11-4512

URL : https://hal.archives-ouvertes.fr/inserm-00129406

T. Reme, D. Hose, D. Vos, J. Vassal, A. Poulain et al., A new method for class prediction based on signed-rank algorithms applied to Affymetrix?? microarray experiments, BMC Bioinformatics, vol.9, issue.1, pp.16-36, 2008.
DOI : 10.1186/1471-2105-9-16

URL : https://hal.archives-ouvertes.fr/inserm-00268075

!. Amazonia, An Online Resource to Google and Visualize Public Human whole Genome Expression Data, The Open Bioinformatics Journal, vol.4, pp.5-10, 2010.

X. Cui, G. D. Churchill, and J. Moreaux, Statistical tests for differential expression in cDNA microarray experiments, Genome Biol, vol.4, 2003.

Y. Huang, S. Colla, J. Stewart, I. Hanamura, and S. Gupta, Genes with a spike expression are clustered in chromosome (sub)bands and spike (sub)bands have a powerful prognostic value in patients with multiple myeloma The molecular classification of multiple myeloma, Blood, vol.108, pp.2020-2028, 2006.

Y. Zhou, B. Barlogie, J. Shaughnessy, J. Scott, R. Siegrist et al., The molecular characterization and clinical management of multiple myeloma in the post-genome era Interferon-alpha induces reversible DNA demethylation of the interferon-induced transmembrane protein-3 core promoter in human melanoma cells IFNalpha is a survival factor for human myeloma cells and reduces dexamethasoneinduced apoptosis, Leukemia. J Interferon Cytokine Res. J Immunol, vol.2331161, issue.42, pp.1941-56, 1998.

T. Arora and D. Jelinek, Differential Myeloma Cell Responsiveness to Interferon-alpha Correlates with Differential Induction of p19INK4d and Cyclin D2 Expression, Journal of Biological Chemistry, vol.273, issue.19, pp.11799-805, 1998.
DOI : 10.1074/jbc.273.19.11799

B. Barlogie, R. Kyle, K. Anderson, P. Greipp, H. Lazarus et al., Standard Chemotherapy Compared With High-Dose Chemoradiotherapy for Multiple Myeloma: Final Results of Phase III US Intergroup Trial S9321, Journal of Clinical Oncology, vol.24, issue.6, pp.929-965, 2006.
DOI : 10.1200/JCO.2005.04.5807

D. Cunningham, R. Powles, J. Malpas, N. Raje, S. Milan et al., A randomized trial of maintenance interferon following high-dose chemotherapy in multiple myeloma: long-term follow-up results Clinical and biological significance of RAS mutations in multiple myeloma, Br J Haematol. Leukemia, vol.10222, issue.47, pp.495-5022280, 1998.

T. Steinbrunn, T. Stuhmer, S. Gattenlohner, A. Rosenwald, A. Mottok et al., Mutated RAS and constitutively activated Akt delineate distinct oncogenic pathways, which independently contribute to multiple myeloma cell survival, Blood, vol.117, issue.6, pp.1998-2004, 2011.
DOI : 10.1182/blood-2010-05-284422

T. Rasmussen, M. Kuehl, M. Lodahl, H. Johnsen, and I. Dahl, Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors, Blood, vol.105, issue.1, pp.317-340, 2005.
DOI : 10.1182/blood-2004-03-0833

P. Liu, T. Leong, L. Quam, D. Billadeau, N. Kay et al., Activating mutations of N-and K-ras in multiple myeloma show different clinical associations: analysis of the Eastern Cooperative Oncology Group Phase III Trial, Blood, vol.88, pp.2699-706, 1996.

W. Chu and I. Hickson, RecQ helicases: multifunctional genome caretakers, Nature Reviews Cancer, vol.32, issue.9, pp.644-54, 2009.
DOI : 10.1038/nrc2682

J. Harrigan and V. Bohr, Human diseases deficient in RecQ helicases, Biochimie, vol.85, issue.11
DOI : 10.1016/j.biochi.2003.10.006

I. Hickson, RecQ helicases: caretakers of the genome, Nature Reviews Cancer, vol.28, issue.3, pp.169-78, 2003.
DOI : 10.1038/nrc1012

A. Arai, T. Chano, K. Futami, Y. Furuichi, K. Ikebuchi et al., RECQL1 and WRN Proteins Are Potential Therapeutic Targets in Head and Neck Squamous Cell Carcinoma, Cancer Research, vol.71, issue.13, pp.4598-607, 2011.
DOI : 10.1158/0008-5472.CAN-11-0320

R. Mendoza-maldonado, V. Faoro, S. Bajpai, M. Berti, F. Odreman et al., The human RECQ1 helicase is highly expressed in glioblastoma and plays an important role in tumor cell proliferation, Anticancer activity of RecQL1 helicase siRNA in mouse xenograft models, pp.1227-3683, 2008.
DOI : 10.2174/1568011053765985

H. Miki, Y. Okada, and N. Hirokawa, Analysis of the kinesin superfamily: insights into structure and function, Trends in Cell Biology, vol.15, issue.9, pp.467-76, 2005.
DOI : 10.1016/j.tcb.2005.07.006

N. Hirokawa, Kinesin and Dynein Superfamily Proteins and the Mechanism of Organelle Transport, Science, vol.279, issue.5350, pp.519-545, 1998.
DOI : 10.1126/science.279.5350.519

Y. Yu and Y. Feng, The role of kinesin family proteins in tumorigenesis and progression, Cancer, vol.283, issue.pt 22, pp.5150-60, 2010.
DOI : 10.1002/cncr.25461

C. Zhu, J. Zhao, M. Bibikova, J. Leverson, E. Bossy-wetzel et al., Functional Analysis of Human Microtubule-based Motor Proteins, the Kinesins and Dyneins, in Mitosis/Cytokinesis Using RNA Interference, Molecular Biology of the Cell, vol.16, issue.7, pp.3187-99, 2005.
DOI : 10.1091/mbc.E05-02-0167

H. Avet-loiseau, C. Li, F. Magrangeas, W. Gouraud, C. Charbonnel et al., Prognostic Significance of Copy-Number Alterations in Multiple Myeloma, Journal of Clinical Oncology, vol.27, issue.27, pp.4585-90, 2009.
DOI : 10.1200/JCO.2008.20.6136

L. Agnelli, M. Forcato, F. Ferrari, G. Tuana, K. Todoerti et al., The Reconstruction of Transcriptional Networks Reveals Critical Genes with Implications for Clinical Outcome of Multiple Myeloma, Clinical Cancer Research, vol.17, issue.23, pp.7402-7414, 2011.
DOI : 10.1158/1078-0432.CCR-11-0596