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Abstract

Background: Propensity score (PS) methods are increasingly used, even when sample sizes are small or treatments are

seldom used. However, the relative performance of the two mainly recommended PS methods, namely PS-matching

or inverse probability of treatment weighting (IPTW), have not been studied in the context of small sample sizes.

Methods: We conducted a series of Monte Carlo simulations to evaluate the influence of sample size, prevalence of

treatment exposure, and strength of the association between the variables and the outcome and/or the treatment

exposure, on the performance of these two methods.

Results: Decreasing the sample size from 1,000 to 40 subjects did not substantially alter the Type I error rate, and led to

relative biases below 10%. The IPTW method performed better than the PS-matching down to 60 subjects. When N

was set at 40, the PS matching estimators were either similarly or even less biased than the IPTW estimators. Including

variables unrelated to the exposure but related to the outcome in the PS model decreased the bias and the variance as

compared to models omitting such variables. Excluding the true confounder from the PS model resulted, whatever the

method used, in a significantly biased estimation of treatment effect. These results were illustrated in a real dataset.

Conclusion: Even in case of small study samples or low prevalence of treatment, PS-matching and IPTW can yield

correct estimations of treatment effect unless the true confounders and the variables related only to the outcome are

not included in the PS model.
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Background
In non-randomized studies, any estimated association

between treatment and outcome can be biased because

of the imbalance in baseline covariates that may affect

the outcome. In this context, propensity score methods

(PS) [1] are increasingly used to estimate marginal causal

treatment effect. The propensity score, as defined by

Rosenbaum and Rubin [1] is the individual probability of

receiving the treatment of interest conditional on the

observed baseline covariates. It has been demonstrated

that, within the strata of subjects matched on the propen-

sity score, distributions of these covariates tend to be simi-

lar between treated and untreated [1]. Therefore,

conditioning on the propensity score allows to draw

unbiased marginal estimates of treatment effects [1].

Four methods of using the propensity score have been

so far described: stratification [1,2], adjustment [1,2],
matching [1-4] and more recently inverse probability of

treatment weighting (IPTW) [3,5-9]. Using an empirical

case study and Monte Carlo simulations, several authors

[8,10] recently showed that the PS-matching and the

IPTW more efficiently reduced the imbalance in baseline

covariates than the two other methods did. However,

these methods were evaluated using large simulated data-

sets of about 10,000 observations, and roughly balanced

treatment groups [10]. From a practical point of view, if

propensity scores have usually been applied to large obser-

vational cohorts [11-13], they have been also used in the
setting of small samples [14,15] or with important imbal-

ances in the treatment allocation, as observed, for
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instance, when estimating the benefit of intensive care unit
(ICU) admission [16].

Although PS-matching and IPTW have not been evalu-

ated in the context of small sample sizes, such a situation

raises specific questions. First, because the propensity

score is used to balance baseline covariates more than to

predict treatment assignment, it has been recommended

[17-19] to include in the PS model all the potential con-

founders and to avoid any selection procedure based on

the goodness-of-fit [19,20]. However, the limited sample

size restricts the number of variables to be included in the

PS regression model to limit model over parameterization.

Moreover, in case of small sample sizes, it is not clear

whether one PS method, i.e. PS matching or IPTW, out-

performs the other or not, considering, on one hand, that

matching without replacement might lead to a further de-

crease in the sample size (and thus, in the statistical power

of outcome comparisons), and, on the other hand, that

IPTW might give an excessive weight to some observa-

tions that could dramatically influence the results. All

these points could be similarly addressed in case of im-

portant imbalances in the size of the treatment arms.

Therefore, our goal was to explore such specific situations

in order to provide some warnings concerning the use of

PS methods, for analysts, but also for readers.

Actually, we assessed the performance of PS-matching

and IPTW in the particular context of small samples,

when the odds ratio (OR) is used as the measure of

treatment effect. We present the results of Monte Carlo

simulations in which we studied the influence of the

sample size, the prevalence of treated patients, and the

strength of the association between the variables and the

outcome and/or the treatment exposure, in order the as-

sess the accuracy of PS methods in terms of bias, vari-

ance estimation and Type I error rates in the estimation

of treatment effect. Finally, some illustration is provided

from a real observational dataset, assessing the benefit of

allogeneic stem cell transplantation in a small sample of

patients with multiple myeloma.

Methods
Monte carlo simulation study

Monte Carlo simulations were used to evaluate the per-

formance of PS-matching and IPTW to estimate the mar-

ginal OR of treatment effect in the context of small sample

sizes and/ or low prevalence of the treated population. They

consisted in (1) randomly generated N independent data-

sets in several settings defined by sample size, treatment ef-

fect and covariates effect on both treatment and outcome;

(2) applying the PS-matching and IPTW approaches to

analyze the data, separately. In each setting, the perform-

ance of each approach was assessed by computing the bias,

the mean squared error (MSE) and the variance of the

estimated OR from the N replications of the dataset. Type I

and Type II error rates, as defined by the frequency of

rejecting the null or alternative hypothesis under the null

or the alternative, respectively, were also estimated.

Data-generating process

Let Z be the variable defining treatment allocation (Z= 1

for the treated, 0 otherwise), Y be the outcome of interest

(Y= 1 for those subject who experienced the outcome, 0

otherwise) and X a set of 4 independent and identically

distributed baseline covariates Xj; j ¼ 1; . . . ; 4
� �

.

The probability of allocated treatment and that of

experiencing the outcome were described by the two fol-

lowing logistic models, respectively:

logit P Zi ¼ 1jXið Þð Þ ¼ α0 þ α1Xi1 þ . . .þ α4Xi4 ð1Þ

logit P Yi ¼ 1ð jZi;Xið ÞÞ ¼ β0 þ βTZi þ β1Xi1 þ . . .

þ β4Xi4 ð2Þ

where Zi was the treatment assignment for subject i,

α0; . . . ; α4ð Þ and β0; βT ; . . . ; β4
� �

the sets of correspond-

ing slope and regression coefficients. Regression coeffi-

cients allowed considering different situations of

covariate association with the treatment and the out-

come: X1 did not affect any of them (α1= β1= 0), X2was

associated only with the outcome (α2= 0, β2= b), X3 only

with the treatment (α3= a, β3= 0), and X4 with both as a

true confounder (α4= a, β4= b).

The value of the intercept α0 was successively set at 0

and −1.38 to guarantee a marginal probability of treat-

ment allocation of 0.50 and 0.2, respectively. For each

set of values of (βT , a, b), the value of β0 was determined

by a minimization algorithm from a sample of 1,000,000

in order to guarantee the outcome to occur in 50 per

cent of subjects, approximately.

For each subject, treatment allocation and outcome

were randomly generated from Bernoulli distributions

with subject-specific probability of treatment assignment

derived from equation (1) or equation (2), as the success

probability, respectively. Each covariate was randomly

generated from a Normal distribution N(μ= 0, σ= 0.5).

Several situations were examined, that differed in terms of:

– Sample size, ranging from 1,000 down to 40 (1000,

900, 800, 700, 600, 500, 400, 300, 200, 180, 160, 140,

120, 100, 80, 60, 40)

– Treatment effect β
T
, successively fixed at 0 (null

hypothesis), 0.41 and 0.92 (alternative hypotheses of

moderate or strong treatment effect) corresponding to

conditional ORs fixed at 1, 1.5 and 2.5, respectively

– Strength of the association between the covariates

and both the treatment and the outcome, with a and
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b fixed at 0.41 and 0.92, corresponding to moderate

and strong association, respectively.

Analysis of simulated data sets

Propensity score models

The propensity score models the probability that a given

patient would be exposed to the experimental treatment,

conditionally to his(her) baseline covariates [1]:

logit P Z ¼ 1ð jVð ÞÞ ¼ β̂V ð3Þ

where β̂ is the maximum likelihood estimator of the base-

line covariate effects, and V is the vector of covariates

included in the model. Eight models were examined

according to the vector V: 3 univariable models with

either one of the covariates X2, X3, X4 (models 1, 2, 3,

respectively), 3 bivariate models (X2, X3), (X2, X4) and (X3,

X4) (models 4, 5, 6, respectively), one 3-covariate model

with X2, X3, X4 (model 7) and finally the full model with

X1, X2, X3, X4 (model 8).

The propensity score (PSi) of the patient i was then

estimated from the predicted probability of treatment

given his(her) covariates as obtained by logistic regres-

sion. The PS-matching method was used because it has

been proposed as a reference method when using pro-

pensity score [10]. However, because it has been demon-

strated that this approach may not be strictly unbiased

to estimate a marginal OR [21], we also applied the

IPTW approach which has been shown to be unbiased

for estimating marginal ORs [22].

Propensity score based matching

Different types of matching algorithms have been pro-

posed [23,24]. We used 1–1 matching without replace-

ment. Each treated subject was randomly selected and

then matched to the nearest untreated subject based on

calipers of width of 0.2 of the standard deviation of the

logit of the PS, as previously recommended [23,24].

Inverse-probability-of-treatment weighting

Each subject was weighted in the likelihood using the

inverse estimated probability of treatment actually admi-

nistered, zi, as follows [6]:

IPTWi ¼
zi

PSi
þ

1� zi

1� PSi
ð4Þ

Note that, for treated subjects (zi= 1), IPTWi ¼
1
PSi

,

while for untreated (zi= 0), IPTWi ¼
1

1�PSi
.

Treatment effect estimates

In each simulated dataset, the benefit of treatment on

the outcome was first estimated by fitting a logistic

model applied to the PS-matched dataset using general-

ized estimating equations with robust variance estimator

(package gee for R, Vincent J Carey, Thomas Lumley

and Brian Ripley). Then, a weighted logistic model using

a generalized linear model adapted to data from a com-

plex survey design, with inverse-probability weighting

and design-based standard errors applied (package

svyGLM for R, Thomas Lumley).

Model performance criteria

A total of 7,300 independent datasets – generated as

described above – was required to detect a difference in

type I error of at least 0.005 as compared to 0.05 with a

power of 95%. The performance of each of the 8 PS models

was evaluated from those 7,300 simulated sets using the

following criteria: type I error, statistical power, absolute

and relative biases from the marginal OR (%) and mean

square error (MSE). Type I error and statistical power were

estimated by the proportions of true and false null hypoth-

eses that were rejected, respectively. MSE was computed

by the average of the squares of the differences between

the estimate and the true value fixed by simulation.

All simulations and statistical analyses were performed

using R software version 1.10.1 (http://www.R-project.

org) running on a Linux platform.

Results
Simulation results

Full fitted models

To evaluate the impact of small sample sizes on estima-

tion, we first fitted a non-parsimonious PS model,

including all the four baseline covariates (model 8).

When using the PS-matching approach, the mean

number of pairs ranged from 21.2 to 22.6 (i.e., from 53.0

to 56.5% of the sample) for 40 patients and increased up

to 370.0 - 421.2 (74.0-84.2%) for 500 patients.

Under the null hypothesis, no substantial increase in the

Type I error rate was observed as the sample size

decreased from 1,000 down to 40 subjects. As shown in

Figure 1 (Panel A), for a treatment effect and a strength of

the association between the covariates and the outcome

both set at a strong level, and a marginal prevalence of the

treatment at 0.5, the Type I error rate ranged from 0.039

to 0.052 for PS matching, and from 0.036 to 0.047 for

IPTW. The Type I error rate was not markedly affected by

the strength of the association between the covariates and

the treatment/outcome (Table 1), nor by treatment preva-

lence, decreasing from 0.5 down to 0.2 (data not shown).

Given a strong treatment effect and balanced treat-

ment groups (treatment prevalence set at 0.5), the bias

and the mean square error expectedly increased, as long as

the sample size decreased, for both PS-matching and

IPTW (Table 1 & Figure 1, Panel B). However, even for

sample sizes of less than 100 subjects, bias remained below

10% (Table 1). For sample sizes of more than 60 subjects,
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IPTW estimations were systematically less biased and MSE

smaller than those reached by PS-matching. Similar results

were found in case of low prevalence of the treatment.

When the strength of the association between the cov-

ariates and the treatment/outcome decreased, IPTW

estimators remained similarly or even less biased than

PS-matching estimators, down to 60 subjects (Table 1).

However, when the sample size was set at 40, the PS-

matching estimators outperformed better than the IPTW

estimators.

Whatever the method, the reduction of treatment ef-

fect (with OR decreasing from 2.5 to 1.5) was associated

with a global decrease in the bias and the MSE, but with

similar relative bias (data not shown). In this situation,

the largest bias was observed for both methods when

the number of subjects decreased to less than 60 (IPTW:

relative bias: 8.1%, MSE: 0.675; PS-matching: relative

bias: 7.6%, MSE: 0.933).

As expected, the variance in the estimation of treatment

effect increased monotonically while the sample size

decreased. The variances of the IPTW estimators were

systematically smaller than the variances of the PS estima-

tors. For both methods and whatever the treatment effect,

the smallest variance was observed when baseline covari-

ates were strongly associated to the outcome, but moder-

ately to treatment.

Selected fitted models

When the simulations were fitted using PS-models that

included at least X4, no substantial increase in the Type

I error rate was observed as the sample size decreased

from 1,000 to 40 subjects whatever the strength of the

association between the covariates, the treatment and

the outcome. However, when removing the true con-

founder from the PS model, the Type I error rate sub-

stantially increased to a maximum obtained for the

IPTW method, in case of strong association between the

two remaining covariates, the treatment and the out-

come (Table 2). Moreover, the IPTW method seems

always more conservative than the PS-matching.

In case of strong treatment effect, variables included in

the PS model affected the bias and the MSE: non-

Figure 1 Evolutions of the type I error (Panel A) and the bias and the mean square error (MSE) in the estimated coefficients (Panel B)

when decreasing the sample size according to the method used, analysis of PS matched or inversely probability weighted (IPW) data

sets. These results were obtained using a non parsimonious PS model that included the four baseline covariates. The strength of the association

between the baseline covariates, the treatment and the outcome was uniformly set as strong (odds ratio of 2.5) with a marginal prevalence of

the treatment of 0.5. In the upper panel (Panel A), the type I error rate was obtained under the null hypothesis. In the lower panel (Panel B), the

bias and the mean square error were computed using a treatment effect set at 2.5.
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inclusion of the true confounder systematically implied a

bias larger than 10%; moreover the inclusion of variables

unrelated to the treatment allocation but related to the

outcome allowed to achieve less biased results than that of

variables related to treatment but unrelated to the out-

come (Table 2 & Figure 2). Such impact on bias was more

important with IPTW than with PS-matching (Table 2),

and when the covariates and the treatment/outcome were

strongly rather than moderately associated. The bias, var-

iances and MSE of the IPTW estimators were systematic-

ally smaller than those of the PS estimators. Similar trends

were found when the treatment effect was moderate, but

the absolute values of both biases and MSE were smaller

than those observed with a strong treatment effect.

The variance of the estimated treatment effect decreased

when the true confounder or covariate unrelated to the

treatment but related to the outcome were included in the

PS, especially with the IPTW method (Table 2). Adding to

model 5 (including true confounder+ variable related to

the outcome) a variable related to treatment allocation

(model 7) did not reduce the bias, but increased the

variance of the estimation. Moreover, adding to the PS

model a variable related neither to the treatment nor

to the outcome (model 8), did not further improve the

precision of the estimation, but increased the variance,

especially when the sample size decreased below 100.

Similar results than those observed using a non-

parsimonious PS model, were found when the marginal

prevalence of the treatment decreased from 0.5 to 0.2.

For both IPTW and PS-matching methods, the min-

imally biased estimation was obtained by incorporating

in the PS model, as well as true confounders, variables

strongly associated to the outcome but moderately asso-

ciated to the treatment.

Illustration to a real observational dataset

To illustrate these results, we then applied the PS methods

described above in a real situation, where we aimed at

evaluating the benefit of sequential autologous-allogeneic

tandem approach in Multiple Myeloma (MM), using a

Table 1 Type I errors, Bias and Mean Square Error (MSE) for non parsimonious PS model according to the method

used (PS matching (PSm) or IPTW) and to the strength of the association between baseline covariates, treatment/

outcome

N OR(a) = 1.5,
OR(b) = 1.5

OR(a) = 2.5,
OR(b) =1.5

OR(a) = 1.5,
OR(b) = 2.5

OR(a) = 2.5,
OR(b) = 2.5

PSm IPTW PSm IPTW PSm IPTW PSm IPTW

40 Type I error 0.055 0.048 0.053 0.056 0.052 0.039 0.052 0.047

Bias 0.05 0.057 0.049 0.07 0.059 0.055 0.048 0.079

% 5.6 6.5 5.4 7.8 7.1 6.6 5.7 9.4

Variance 0.875 0.593 0.918 0.694 0.873 0.576 0.903 0.683

MSE 0.878 0.597 0.92 0.699 0.876 0.579 0.905 0.690

60 Type I error 0.045 0.046 0.047 0.046 0.044 0.039 0.044 0.039

Bias 0.058 0.036 0.058 0.049 0.048 0.022 0.05 0.033

% 6.4 4 6.4 5.4 5.7 2.6 6 3.9

Variance 0.511 0.36 0.553 0.414 0.484 0.329 0.516 0.388

MSE 0.514 0.362 0.556 0.416 0.486 0.33 0.519 0.389

100 Type I error 0.049 0.046 0.047 0.046 0.047 0.034 0.04 0.036

Bias 0.023 0.018 0.02 0.022 0.021 0.015 0.025 0.016

% 2.6 2 2.2 2.5 2.5 1.8 2.9 1.9

Variance 0.254 0.194 0.282 0.223 0.242 0.177 0.261 0.204

MSE 0.255 0.194 0.283 0.223 0.243 0.177 0.262 0.204

500 Type I error 0.049 0.046 0.05 0.048 0.041 0.038 0.042 0.037

Bias 0.01 0.007 0.012 0.008 0.01 0.005 0.013 0.005

% 1.1 0.8 1.3 0.9 1.2 0.6 1.5 0.6

Variance 0.04 0.034 0.045 0.038 0.037 0.032 0.042 0.035

MSE 0.04 0.034 0.045 0.038 0.037 0.032 0.042 0.035

This table specially details the sample sizes ranging from 40 to 500. Prevalence of the treatment was set at 0.5. Conditional treatment effect was set at log(2.5)

except for Type I errors estimations (log(1)). (N: number of subjects; PS: propensity score; IPTW: inverse probability of treatment weighting, OR(a) and OR(b):

strengths of the association between baseline covariates and treatment or outcome respectively, as defined on an odds ratio scale).
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small observational dataset [15]. Twenty-three patients

(median age 48 years, range 26–59 years) with relapsed

multiple myeloma (MM) who received the treatment under

study were compared to a control group of 142 MM relaps-

ing patients free of such a treatment (median age 51.5 years,

range 25–65 years). Hence, this dataset combined the two

situations of relatively small sample size (n=165) and very

low prevalence of treatment (23/165, 14%). We used the

survival status at 24 months as the outcome measure, with

benefit of treatment measured on ORs.

Three baseline variables, related to treatment allocation,

to the outcome or to both of them, were available at base-

line: 1) age at diagnosis, only associated with treatment

allocation (with untreated patients more likely to be older

than treated; p = 0.05), 2) beta2 microglobulin level≥ 3.5,

only moderately associated with the outcome OR=1.8

(95%CI 0.9;3.5 , p = 0.10), and 3) time elapsed since the

first line treatment at relapse, strongly associated with

both the treatment allocation OR=0.4 (95%CI 0.2;0.8 ,

p = 0.01) and to the outcome OR=0.4 (95%CI 0.2;0.7 ,

p = 0.002). Of note, log time was considered instead of the

time to insure the validity of logistic models.

In this situation, we applied the PS-matched and PS-

weighted (IPTW) approaches, when PS incorporated the

baseline information separately. Results are summarized

in Table 3. As expected by the simulation results, the

choice of the variable included in the PS model heavily

impacted the estimation of treatment effect, and this

was even more pronounced when using the IPTW-

weighted estimator than the PS-matched estimator. In-

deed, consistently with the simulation findings, including

only the variable related to the treatment, e.g. age at

diagnosis, yielded estimates different than that obtained

by including only the true confounder, namely time

elapsed since the first line treatment at relapse.

If we assumed from the former simulation results that

the model including the variable related to the outcome

and the true confounder (namely, the beta2 microglobu-

lin level and the time elapsed since the first line treat-

ment at relapse) was the optimal model, results were

concordant with those obtained by simulation. Hence,

the results obtained by including only the true confoun-

der were very close to the former in terms of estimates

and variance. Omitting from the PS model either the

Table 2 Bias and variance of the estimated treatment effect for the different selected PS models and according to the

method used (PS matching or IPTW)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

N X2 X3 X4 X2,X3 X2,X4 X3,X4 X2,X3,X4 X1,X2,X3,X4

PSm IPTW PSm IPTW PSm IPTW PSm IPTW PSm IPTW PSm IPTW PSm IPTW PSm IPTW

40 Type I error 0.062 0.041 0.059 0.051 0.058 0.040 0.060 0.047 0.053 0.036 0.048 0.045 0.053 0.044 0.052 0.047

Bias 0.273 0.235 0.265 0.251 0.086 0.06 0.259 0.25 0.075 0.061 0.064 0.071 0.075 0.074 0.048 0.079

Relative bias 32.6 28.1 31.7 30 10.3 7.2 31 29.9 9 7.3 7.6 8.5 9 8.8 5.7 9.4

Variance 0.809 0.508 0.872 0.566 0.862 0.551 0.874 0.573 0.843 0.56 0.907 0.634 0.904 0.644 0.903 0.683

MSE 0.884 0.563 0.942 0.629 0.869 0.555 0.941 0.635 0.848 0.563 0.911 0.639 0.909 0.649 0.905 0.69

60 Type I error 0.055 0.050 0.058 0.057 0.045 0.038 0.052 0.053 0.043 0.037 0.049 0.042 0.044 0.041 0.044 0.039

Bias 0.239 0.203 0.235 0.217 0.041 0.02 0.245 0.219 0.047 0.022 0.051 0.028 0.059 0.03 0.05 0.033

Relative bias 28.6 24.3 28.1 25.9 4.9 2.4 29.3 26.2 5.6 2.6 6.1 3.3 7.1 3.6 6 3.9

Variance 0.466 0.317 0.52 0.354 0.494 0.339 0.532 0.348 0.477 0.333 0.524 0.379 0.514 0.375 0.516 0.388

MSE 0.523 0.359 0.575 0.401 0.495 0.339 0.592 0.396 0.479 0.334 0.527 0.38 0.517 0.376 0.519 0.389

100 Type I error 0.062 0.057 0.065 0.066 0.052 0.039 0.057 0.062 0.042 0.034 0.046 0.041 0.044 0.037 0.04 0.036

Bias 0.209 0.193 0.212 0.203 0.029 0.013 0.215 0.203 0.029 0.013 0.028 0.016 0.028 0.016 0.025 0.016

Relative bias 25 23.1 25.3 24.3 3.5 1.6 25.7 24.3 3.5 1.6 3.3 1.9 3.3 1.9 2.9 1.9

Variance 0.239 0.175 0.254 0.194 0.242 0.186 0.256 0.188 0.239 0.18 0.259 0.205 0.253 0.199 0.261 0.204

MSE 0.282 0.212 0.299 0.235 0.243 0.186 0.302 0.23 0.24 0.18 0.259 0.205 0.254 0.2 0.262 0.204

500 Type I error 0.148 0.155 0.150 0.162 0.051 0.045 0.146 0.157 0.046 0.040 0.046 0.042 0.045 0.037 0.042 0.037

Bias 0.187 0.182 0.192 0.191 0.014 0.005 0.193 0.191 0.015 0.005 0.014 0.005 0.014 0.005 0.013 0.005

Relative bias 22.3 21.8 22.9 22.8 1.7 0.6 23.1 22.8 1.8 0.6 1.7 0.6 1.7 0.6 1.5 0.6

Variance 0.037 0.032 0.042 0.036 0.04 0.034 0.041 0.034 0.039 0.033 0.044 0.037 0.042 0.035 0.042 0.035

MSE 0.072 0.066 0.079 0.072 0.04 0.034 0.078 0.071 0.039 0.033 0.044 0.037 0.042 0.035 0.042 0.035

This table specially details the sample sizes ranging from 40 to 500. Prevalence of the treatment set at 0.5, treatment effect.
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true confounder or the variable related to the outcome

substantially modified the estimation of treatment effect.

Moreover, as demonstrated in the simulation study,

adding to the PS model variables only related to the

treatment allocation (that is, models with age, beta2

microglobulin level and time to relapse) led to a larger

variance in the estimation of the treatment effect, espe-

cially when using a PS-matching approach.

Finally, if considering the recommended strategy

defined above, that is, only using covariates strongly

associated with the outcome in the PS, the conclusion

was somewhat concordant whatever the approach.

Discussion
Propensity score methods have been widely studied to

analyze very large datasets [11-13]. However, although

originally developed in epidemiological settings with

large sample sizes, they are increasingly being used to

estimate causal treatment effects in clinical settings,

where sample sizes are rather limited as compared to

the former settings. Actually, while the former epidemio-

logical settings deal with thousands of patients, the clin-

ical setting usually have to deal with at most several

hundred patients, or even less than 50 [14,15]. However,

only a few publications have addressed the issue of PS

properties in such a situation [25]. Thus, the aim of this

study was to get further insights into their performances

when either the sample sizes or the prevalence of expos-

ure are rather low, and to address the question of the

variables to include in the PS model in such situations.

To answer those questions, we used the 2 main recom-

mended PS approaches [11-13], namely the PS-matching

and IPTW. The large use of PS matching was confirmed

by a PubMed search (performed on October, 2010) that

selected 521 references dealing with PS matching from a

whole set of 2,045 PS references. By contrast, only 64

references dealt with IPTW or PS-weighted approaches,

and this could be explained because they have been more

recently promoted, and appear more complex to use than

PS-matching. Other PS approaches have been developed

Table 3 Estimated odds ratios (OR) of death and 95% confidence interval using naive, propensity score matching, or

IPTW approaches

Model Adjustment in the original set PS-matched sample IPT-Weighted sample

Covariates OR (95%CI) p-value No pairs OR (95%CI) p-value Sum of weights OR (95%CI) p-value

X1= age 0.44 (0.14;1.42) p = 0.17 22 0.27 (0.06;1.23) p = 0.091 327.5 0.39 (0.11;1.32) p = 0.13

X2=beta2micro 0.47 (0.15;1.47) p = 0.19 23 0.27 (0.05;1.41) p = 0.12 330.0 0.48 (0.14;1.65) p = 0.25

X3= time to relapse 0.24 (0.07;0.84) p = 0.026 23 0.19 (0.05;0.65) p = 0.0088 349.1 0.27 (0.08;0.92) p = 0.039

X1+X2 0.49 (0.15;1.57) p = 0.23 22 0.48 (0.09;2.58) p = 0.39 317.9 0.41 (0.12;1.36) p = 0.15

X1+X3 0.22 (0.06;0.85) p = 0.028 18 0.20 (0.03;1.17) p = 0.073 456.0 0.23 (0.05;1.00) p = 0.052

X2+X3 0.26 (0.07;0.93) p = 0.039 23 0.19 (0.05;0.68) p = 0.011 340.8 0.26 (0.08;0.86) p = 0.028

X1+X2+X3 0.24 (0.06;0.93) p = 0.040 20 0.41 (0.08;2.1) p = 0.28 432.1 0.21 (0.05;0.86) p = 0.031

Figure 2 OR biases and MSE according to the sample size and

variables included in the propensity score when using an IPTW

approach. Upper panel: OR biases; Lower panel: OR Mean Square

Error (MSE).
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such as PS adjustment [1,2] or PS-quintile stratification

[1,2] but they have been shown of less performance in

large samples. Thus, it appeared unlikely that they would

perform better in the context of small sample size or low

prevalence of exposure.

Based on a simulation study, we showed that no sub-

stantial increase in the Type I error rate was observed as

the sample size decreased from 1,000 to 40 subjects, but

that small sample sizes lead to biased estimations of the

marginal treatment effect. However, relative bias

remained inferior to 10%, even with small sample down

to 40 patients. Of note, in case of small sample sizes

down to 60 subjects, IPTW method seems to perform

always better than the PS-matching. Such results could

have been expected as IPTW method preserves the sam-

ple size all along the analysis process and maximizes the

available amount of information as compared to PS-

matching. On the contrary, 1:1, without replacement

matching procedures are associated with a reduction in

the sample size, as all treated usually cannot find a non-

treated to be matched with. Hence, because the weighted

dataset is generally larger than the matched dataset, the

variance and the confidence intervals associated with the

IPTW estimations are expected to be smaller. However,

when N was set at 40, the PS-matching estimators were

either similarly or even less biased than the IPTW esti-

mators. One possible explanation is that, in case of very

small samples, the weighting resulted in a significant dis-

tortion of the population, with excessive weights given

to marginal subjects. This was illustrated in the real

dataset where the sum of weights was sometimes far

above the actual sample size. However, this could be

addressed by using stabilized weights, as previously

reported [26]. We thus reran the analyses using such sta-

bilized weights, but in our case, stabilization did not

affect the results (data not shown).

The second question addressed in this study was the

selection of the covariates to be included in the PS model,

in case of small sample sizes. Previous simulation studies

have addressed different questions concerning the choice

of the variables to be included in the PS model, such as

the effect of omitting confounding variables when using

quintile-stratified propensity adjustment in longitudinal

studies [27], or the relative performances of PS models

when including variables related to treatment allocation,

variables related to outcome or all variables related to

either outcome or treatment or neither [28]. However,

data concerning appropriate PS models when dealing with

limited sample sizes are still lacking. Indeed, while it is

usually recommended [17-19] to include in the PS model

all the potential confounders, this could lead to over para-

meterized PS models when the number of treated is lim-

ited. On the other hand, it has been previously reported

that PS model misspecification could highly influence the

estimation [25,27]. Therefore, in the context of small sam-

ple sizes, one might consider preferable to apply some

variable selection procedure, but it seems crucial to

adequately choose those variables to be included in the PS

model. To do so, it has previously been shown that,

because the goal of a PS model is to efficiently control

confounding, but not to predict treatment or exposure,

the use of selection procedure based on the goodness-of-

fit cannot be recommended [19,20,25]. As previously

reported [17,25], we found that the inclusion in the PS

model of variables unrelated to the exposure but related

to the outcome is mandatory. Indeed, consistently with

the results published by Brookhart et al. [25], we found

that the inclusion of such variables decreased both the bias

and the variance of the estimated treatment effect. We

also found that excluding the true confounder from the

PS model resulted, whatever the method used, in a signifi-

cantly biased estimation of treatment effect. These results

are not in line with the advices provided by Brookhart

et al. [25]. Indeed, the latter authors suggested that includ-

ing in the PS model a true confounder that is only weakly

related to the outcome, but very strongly related to the

exposure might result in a loss in efficiency that is not off-

set by a large enough decrease in bias. Our different

results might be otherwise explained by the fact that our

simulation study did not explore a situation where the true

confounder is very strongly related to the exposure but

only very weakly to the outcome.

We measured the performance of each approach using

type I error, power, bias and MSE estimated from inde-

pendent replicates of simulated datasets. However, in

practice, the accurate way to evaluate the performance

of a PS procedure relies on the assessment of its ability

to reach conditional exchangeability between groups, as

recommended by Austin [4,29]. Balance is commonly

measured on standardized differences, though permuta-

tion tests have been also reported as an interesting alter-

nate way of evaluation. Indeed, such tests tend reject

when bias due to inexact propensity matching is enough

to undermine causal inferences, and tend not to reject

when that bias is small enough to be ignored, could be

used instead [30].

The importance of variables to be included in the model

was exemplified in our real dataset, where achieved bal-

ances and treatment effect estimates (Table 3) heavily

depended on the approach (PS-match versus IPTW) and

the included covariates, with estimated ORs of death ran-

ging from 0.19 (when PS included the true confounder)

up to 0.4, which was reached by both IPTW and PS-

matching approach in situations where the true confoun-

der was omitted from the model. While we chose to focus

on the 2 currently recommended PS methods, PS match-

ing and IPTW, it should be emphasized that PS adjust-

ment and stratification on the quintiles of the PS have not
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been and compared to the former methods in the context

of small sample sizes. Further simulation studies should

be performed to compare the performances of the 4 meth-

ods in the context of small sample size.

For the PS matching, we used a classical pair matching

procedure, based on a caliper defined as 0.2SD of the logit

of the PS. This was chosen as the mostly used matching

method in clinical settings [31], while that caliper width

was recommended on the basis of simulation results

[23,32]. However, several other matching procedures could

have been proposed that may offer interesting advantages

over the former, notably in the context of small sample

sizes [33]. Otherwise,data-adaptive algorithms such as ridge

matching have been also reported to perform better than

“classical” pair matching [34]. Nevertheless, evaluating the

matching algorithm was not the goal of this paper, though

its importance deserves to be the focus of a specific simula-

tion study. This should be the framework of further studies.

We did not consider other model misspecifications

but those regarding the PS model. Indeed, in the class of

IPW estimators, it is well known that the weighted esti-

mators are consistent provided that the model for esti-

mating the PS is correctly specified. Otherwise, to relax

this restriction, so-called doubly-robust estimators have

been proposed [8], that also require the specification of

the outcome regression model. Misspecifications may

consist in choosing the wrong link function, or selecting

a linear instead of a non-linear predictor. In case of

model misspecification, the mean square error of esti-

mate has been shown to be reduced by using the match-

ing estimator, both for small-to-moderate sample sizes

[35]. Further work in this topic may be of interest.

The choice of the odds ratio as a measure of treatment

effect has been debated. Indeed, the choice of the appro-

priate PS based estimators for conditional and marginal

non-linear treatment effects has been thoroughly dis-

cussed in the recent literature [21,36-38]. Actually, the

problem with OR, usually described as non-collapsibility,

refers to the fact that conditional and marginal effects

might differ unless the true effect is null [21,39,40]. More-

over, Austin et al. [23] have previously shown that PS-

matching, as compared to PS-stratification or -adjustment,

offers substantially less biased estimates of both condi-

tional and marginal OR. The choice to control the condi-

tional treatment effect rather than the marginal as

proposed by Austin [23] was driven by our wish to achieve

a probability of 0.50 of experiencing the outcome and to

maximize the statistical power considering the small sam-

ple size. The resulting marginal treatment effect was

thereafter estimated using a second simulation study of

sample size 1,000,000 that confirmed that conditional and

marginal treatment effects were in the same range. Other-

wise, previous simulations studies support the use of

IPTW estimators as approximately unbiased estimators of

marginal odds ratios [22,38]. The choice of a binary out-

come and the use of an adapted and largely applied regres-

sion model were motivated by our will to overcome a

biostatistical issue that has been raised by one of our clin-

ical question.

Finally, the choice of an event rate of 0.5 could be

debated. Indeed, the prevalence of event may be far from

0.5 in clinical situations. However, we chose a prevalence

of 0.5 because our goal was to assess the effects of

decreasing the sample size. Then, when dealing with sam-

ple size of 40–60 patients, an even rate of 0.1-0.2 would

have been associated with a very small number of events,

and a high risk of model misspecification. To confirm this

assumption, we reran the simulation using an event rate

fixed at 0.2. As expected, decreasing the event rate down

to 0.2 was associated for both methods with unacceptable

increases in variance and MSE, when the sample size

was ≤100 (variance ranging from 1.294 to 177.4; MSE

ranging from 1.309 to 177.4).

Conclusions
In conclusion, this simulation study revealed that, even in

case of small study samples or low prevalence of treat-

ment, both propensity score matching and inverse prob-

ability of treatment weighting can yield unbiased

estimations of treatment effect. However, in such situa-

tions, a particular attention should be paid to the choice

of the variables to be included in the PS model. The opti-

mal model seems to be that including the true confounder

and the variable related only to the outcome, although

reporting several models as a sensitivity analysis may ap-

pear a good way of arguing for or against the robustness

of the estimated effects. Future work in this area should

aim at providing for the clinicians: (1) formal rules to

choose the best approach between matching and weight-

ing according to the population characteristics, (2) prac-

tical strategies to select the variables for inclusion in a

propensity score model in case of small study samples or

low treatment prevalence.
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