1471-2105-13-254 1471-2105 Methodology article <p>VarioML framework for comprehensive variation data representation and exchange</p> ByrneMylesmyles.byrne@fimm.fi FokkemaFACIvoI.F.A.C.Fokkema@lumc.nl LancasterOwenol8@leicester.ac.uk AdamusiakTomasztadamusiak@mcw.edu Ahonen-BishoppAnnianni.ahonen-bishopp@bcplatforms.com AtlanDavidatlan_d@web.de BéroudChristophechristophe.beroud@inserm.fr CornellMichaelMichael.Cornell@cmft.nhs.uk DalgleishRaymondraymond.dalgleish@le.ac.uk DevereauAndrewAndrew.Devereau@cmmc.nhs.uk PatrinosPGeorgegpatrinos@upatras.gr SwertzAMorrism.a.swertz@rug.nl TaschnerEMPeterTaschner@lumc.nl ThorissonAGudmundurgthorisson@gmail.com VihinenMaunomauno.vihinen@med.lu.se BrookesJAnthonyajb97@leicester.ac.uk MuiluJuhajuha.muilu@helsinki.fi

Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland

Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands

Department of Genetics, University of Leicester, Leicester, UK

Medical College of Wisconsin, Milwaukee, WI, USA

Biocomputing Platforms, Ltd, Espoo, Finland

Phenosystems Inc, Brussels, Belgium

INSERM UMR_S910, Faculté de Médecine La Timone, Marseille, France

National Genetics Reference Laboratory, Manchester, UK

Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece

Department of Genetics, Genomics Coordination Center University Medical Center Groningen and Groningen Bioinformatics Center, University of Groningen, Groningen, Netherlands

Department of Experimental Medical Science, Lund University, Lund, Sweden

Institute of Biomedical Technology, University of Tampere, Tampere, Finland

Tampere University Hospital, Tampere, Finland

BMC Bioinformatics
<p>Sequence analysis (applications)</p>
1471-2105 2012 13 1 254 http://www.biomedcentral.com/1471-2105/13/254 10.1186/1471-2105-13-25423031277
145201223920123102012 2012Byrne et al.; licensee BioMed Central Ltd.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. LSDB Variation database curation Data collection Distribution

Abstract

Background

Sharing of data about variation and the associated phenotypes is a critical need, yet variant information can be arbitrarily complex, making a single standard vocabulary elusive and re-formatting difficult. Complex standards have proven too time-consuming to implement.

Results

The GEN2PHEN project addressed these difficulties by developing a comprehensive data model for capturing biomedical observations, Observ-OM, and building the VarioML format around it. VarioML pairs a simplified open specification for describing variants, with a toolkit for adapting the specification into one's own research workflow. Straightforward variant data can be captured, federated, and exchanged with no overhead; more complex data can be described, without loss of compatibility. The open specification enables push-button submission to gene variant databases (LSDBs) e.g., the Leiden Open Variation Database, using the Cafe Variome data publishing service, while VarioML bidirectionally transforms data between XML and web-application code formats, opening up new possibilities for open source web applications building on shared data. A Java implementation toolkit makes VarioML easily integrated into biomedical applications. VarioML is designed primarily for LSDB data submission and transfer scenarios, but can also be used as a standard variation data format for JSON and XML document databases and user interface components.

Conclusions

VarioML is a set of tools and practices improving the availability, quality, and comprehensibility of human variation information. It enables researchers, diagnostic laboratories, and clinics to share that information with ease, clarity, and without ambiguity.

Background

The study of disease-causing and benign variations in the human genome is progressing rapidly. Whole genome and exome sequencing continues to expand, and improved tools for variant calling are becoming available 1 2 3 . Cost-effective sequencing, paired with variant discovery, promises to make early detection and intervention accessible for the millions of individuals with genetic diseases.

However, realizing this potential is blocked by the problem of integrating and coordinating the steps towards “a pipeline leading from discovery to delivery” 4 . The GEN2PHEN project was initiated in 2008 to unify human and model organism genetic variation databases, and remove the obstacles to translation of variant data from laboratory to clinic to public 5 . This has involved attempting to unify the divergent data representations of various database communities.

The focus of this effort is the locus-specific database (LSDB) 6 . LSDBs describe the variants discovered on a single gene, a gene family or a group of genes involved in the similar diseases or traits. As of this writing, 4,111 LSDBs can be easily searched online 7 . LSDBs are curated by experts on their respective loci, and as such are typically the best resources of gene variant information available 8 . A comprehensive 2010 analysis of 1,188 LSDBs provides a useful overview of the domain, providing encouraging results, such as finding only 5.4% to be outdated 9 . However, the study also found that only 8% provided detailed disease and phenotypic descriptions. LSDBs also vary widely in format, diverging to satisfy the immediate requirements of numerous use cases, making comprehensive, global analysis of data concerning a given variant difficult, if not impossible 10 . LSDBs are also typically incomplete, either from a lack of capacity on the part of the data submitters or curators to include all pertinent data, or from the original data lacking key elements altogether 9 11 . It is well recognised that the data will often be incomplete if you ask too much of the submitters 12 . Into this situation, next-generation sequencing pipelines are rapidly increasing the scale and complexity of data to be managed 13 .

Methods

Undesigning a standard

All terms and abbreviations used are explained in the glossary (Table 1).

<p>Table 1</p>

Name

Definition

URL

API

Application programming interface

-

BSVM

Pioneering early LSDB integration standard.

See Tyrelle G, King GC, 2003 15

Café Variome

Variation data publishing service

http://cafevariome.org/

Extended Backus-Naur Form

A notation that expresses the grammar of a computer language.

http://en.wikipedia.org/wiki/Backus-Naur_Form

GEN2PHEN

EU project integrating genotype and phenotype data.

http://www.gen2phen.org

GSVML

Genomic Sequence Variation Markup Language

See Nakaya J, Kimura M, et al. 2010 16

HPO

Human Phenotype Ontology

http://www.human-phenotype-ontology.org/

Jackson

Java JSON library

http://wiki.fasterxml.com/JacksonHome

JAVA

General programming language

http://www.java.com

JAXB

Java JSON library

http://jaxb.java.net/

JSON

Javascript Object Notation

http://en.wikipedia.org/wiki/JSON

LSDB

Gene variant database, Locus Specific Database

-

MAGE-TAB

A tab-delimited format for representing functional genomics data.

http://www.mged.org/mage-tab

MIRIAM

The MIRIAM Registry provides a set of online services for the generation of unique and perennial identifiers, in the form of URIs.

http://www.ebi.ac.uk/miriam/main/

MOLGENIS

Software generating infrastructure (databases, APIs, GUIs) for life science projects.

http://www.molgenis.org

Object Model

An abstract representation of a domain’s concepts, data, and relationships between these, used to design or generate software.

-

Observ-OM

A simple system to format and exchange observation data.

http://www.molgenis.org/wiki/ObservStart

ORCID

Open Researcher and Contributor Identification

http://orcid.org/

PML/DVAR

An implementation of the PaGE-OM object model.

http://www.openpml.org/

RelaxNG

Schema definition language for use with XML.

http://relaxng.org/

RDF

Resource Description Framework

http://www.w3.org/RDF/

Schematron

High-level schema definition language for use with XML.

http://www.ascc.net/xml/resource/schematron/Schematron2000.html

SKOS

Simple Knowledge Organization System

http://www.w3.org/2004/02/skos/

SO

Sequence Ontology

http://www.sequenceontology.org/

UML

Unified Modeling Language

http://en.wikipedia.org/wiki/Unified_Modeling_Language

VariO

Variation Ontology

http://variationontology.org/

VCF

Variant Call Format

http://vcftools.sourceforge.net/specs.html

XGAP

XGAP is an open and flexible object model for xQTL, GWL, GWA and mutagenesis data

http://www.xgap.org

XML

eXtensible Markup Language

http://www.w3.org/XML/

Glossary

We began by incorporating previous work on data requirements 6 8 14 and data modelling activities, such as PaGE-OM 15 and its generalization Observ-OM 16 , in the design of VarioML LSDBs specification.

VarioML was developed by an international collaboration of variation experts, over a series of workshops organised by the GEN2PHEN project. The design has closely followed the work of Tyrelle and King 17 on the now defunct BSVM standard, where they proposed using semantically well-defined XML and RDF elements for LSDB data integration. VarioML is designed to serve the greater part of LSDB use cases directly, complementing formats such as GSVML 18 and PML/DVAR 19 , the latter being an implementation of the PaGE-OM object model 15 . The format is kept consistent with PaGE-OM and Observ-OM by rooting XML element definitions in the same object model. By providing a structured data framework designed close to application domains, VarioML complements tabular data formats such as VCF 20 21 and MAGE-TAB 22 , which are designed for high-throughput and manual/spreadsheet-based data handling needs.

The collaboration’s goal was to readdress these requirements by providing simple data structure components for developing use case specific solutions, defined independently using high-level schema definition languages such as Schematron 23 . While it may sound complex, this approach provides the necessary flexibility to serve simple specifications for straightforward use cases, while simultaneously enabling development of more complex specifications, all the while maintaining a common foundation of terms, logic, and tooling that integrates both.

Ontologies: How much meaning is enough?

Reducing the inherent complexity of annotation formats began by rooting the semantics of the VarioML standard as deeply as possible into base ontologies that underlie science and logic in general. This highlighted the need for a new harmonized model for describing scientific observations in general, providing a common language usable across all domains. For this purpose, a new object model, Observ-OM 16 , was developed.

In Observ-OM, four basic concept classes represent all elements of any kind of observable data: Targets, Features, Protocols, and Observations. The value this model represents for the variation pipeline is hard to overstate, as it represents what is probably the maximum possible simplification of elements common to all usable scientific observations regarding variants and associated phenotypes.

Grounded in Observ-OM, VarioML had the task of adding only what is absolutely necessary to provide an intuitive and ‘decision-free’ path for researchers and clinicians: the shortest possible path from variation data in all its current forms, to a unified representation, distributed globally. At the same time, this shortest path had to be extensible to describe non-minimalistic data as needed (Figure 1).

<p>Figure 1</p>

Simplified conceptual UML object model used in VarioML.

Simplified conceptual UML object model used in VarioML. The VarioML object model is derived from Observ-OM (http://www.observ-om.org/wiki/ObservStart), with some modifications to simplify implementation. E.g., Observable Feature (such as phenotype or mutation name) and Observed Value (existence of phenotype or variation) are denormalized into a single XML element. This avoids unnecessary nesting of observation elements which do often have one-to-one relationship, in the XML implementation. Entities are composed into Observations, having properties such as evidence codes, observation protocols and observation time. Associations between elements are described as single lines, where an asterisk means a 0-to-many multiplicity relationship; i.e. Observation can have one or many evidence codes. All entities also inherit from Annotatable properties which are needed for database cross references and comments. In this case, the open arrow symbol means inheritance or an is-a relationship.

To achieve this, LOVD-based LSDBs 8 24 were used as a content model, in addition to modelling done in previous work 15 25 , and in workshops organized by the GEN2PHEN consortium. This modelling meets the requirements specified previously 26 27 . The specification aims to be minimalistic, but has room for additions where the need arises. Despite this simplification, the underlying base schema can be too verbose for many use cases. Therefore it is important that the schema can be “narrowed”, using separate validation tools for specific cases. This has been done for the Cafe Variome pipeline 28 , where separate Schematron 23 rules are used for defining the content. Schematron was chosen because it allows making complex assertions about the content of XML documents, more complex than are possible using the RelaxNG schema language 29 used for defining the base VarioML schema, which has better tooling support for defining initial schema elements.

Existing ontologies, such as the Human Phenotype Ontology (HPO) 30 , Sequence Ontology (SO) 31 , and Variation Ontology (VariO) 32 , can be used with VarioML. Separate SKOS (Simple Knowledge Organization System) 33 vocabularies have been provided for elements which do not have online definitions. The semantics of VarioML elements are well defined via the Observ-OM model; content can be relatively easily transformed to RDF representations for linked data approaches 34 . An example XSLT application is provided for converting Cafe Variome XML content to an RDF schema, derived using the Pharmacogenetics ontology 35 .

A leading example of a submission tool that fulfills this standard is the Cafe Variome platform 28 for announcing and advertising disease-related variations identified by diagnostic laboratories, allowing them to be shared by diverse third parties. This platform, when integrated with diagnostic software, allows push-button submission of data from tables to central databases. For these submissions, the single variant is the agreed-upon central organizing concept 26 . Variants should be submitted in VarioML format, as seen in the example in Figure 2.

<p>Figure 2</p>

A Cafe Variome submission of a COL1A1 variant.

A Cafe Variome submission of a COL1A1 variant. The different VarioML elements of the data submitted are flanked by the corresponding XML tags and explained in the text.

To date, this functionality has been built into the Leiden Open Variation Database 24 ; GenSearch 36 , a tool to detect and interpret variants in DNA sequences obtained by capillary sequences; BC|SNPMax 37 , a data management tool for genomic research; and is currently being testing with Alamut 38 .

Results

Composing the format

VarioML is composed from an underlying set of XML elements, which reuse the same structural components. Most of the XML elements like phenotype, consequence and evidence_code are so-called ontology terms, which have necessary properties for making cross references to existing ontologies in a flexible way:

<phenotype term = "Autoimmune polyglandular syndrome type 1" accession = "240300" source = "omim"/>

All ontology terms can be annotated with comments and database cross-references (see Figure 1). Elements can be extended by adding new schema elements: Phenotype is an example of an observation element which reuse properties from the ontology term element. Observation elements have additional information related to the observation, such as date and evidence codes For example, an observed “consequence of mutation” has the evidence code “curator inference,” as defined in the Evidence Code ontology 39 :

<consequence term = "translational frameshift" accession = "SO:0001210" source = "obo.so">

<evidence_code term = "curator inference" accession="ECO:0000205" source="obo.eco"/>

</consequence>

Pathogenicity, on the other hand, is a special case of consequence element, having an optional scope attribute for indicating if the variant has been observed in an individual, family, or population. The pathogenicity element also has an optional phenotype element for specifying causal relationships explicitly, where needed:

<pathogenicity term = "probably pathogenic"

uri = "http://purl.org/varioml/pathogenicity/skos/1.0#p_0003"

scope = "family" >

<phenotype term = "Osteogenesis Imperfecta, Type I"

accession="166200" source="omim"/>

<evidence_code term = "curator inference" accession="ECO:0000205" source="obo.eco"/>

</pathogenicity>

VarioML is currently used as the XML data submission and release format for the Cafe Variome announcement service. An example of this implementation is given in Figure 2.

In the next section, we provide a brief overview of the elements seen in Figure 2, an example of the straightforward variant descriptions that make up the bulk of LSDB submissions.

Modular elements for variant annotation

To match raw variation data to the standard descriptions specified in ‘Guidelines for establishing locus specific databases’ 26 , users simply match their data to VarioML elements. For large data sets, VarioML’s validation tools can be used to check converted data. Following is a partial list of variant data elements required and validated by VarioML, some of which are used in Figure 2.

Source

The source element stores information on the submitting sources, with attributes for submitting instance or database, contact details, and acknowledgements.

VarioML requires submitter identification using the db_xref element, and recommends that an ORCID ID 40 be obtained for this purpose. ORCID (Open Researcher and Contributor Identification) is a platform building towards automation of authorization and access infrastructure for institutions and federations 41 . This combination of standardization of data and researcher ID are necessary components of a translational information system, in which data discovery, access, and incentives to sharing must be closely integrated, constituting a sustainable ecosystem 42 .

Variant

The variant element can be used in a straightforward manner, bounding information reported on a variant described using the HGVS naming scheme 43 , which has recently been formally described as a scientific sub-language in Extended Backus-Naur Form 44 .

ImportantVariant also provides recursive sub-elements, for cases where the reporting variant is composed of other variants located on the same or a sister chromosome.

Variant has an optional observation target attribute. For simplicity, the Panel element is used as a generic target for variant: panel can be used to describe any number of individuals, with or without group-specific identifiers, such as family or population.

Gene

The Gene is given as a database cross-reference, where source indicates the database or system (e.g. HUGO), and 'accession' is the gene name (e.g., AGA). HGNC symbols or IDs 45 must be used for the primary name of a gene. Gene is a database cross-reference type, which is conceptually similar to ontology term.

When specifying sources, the MIRIAM namespace identifiers should be used 46 . For example, the identifier for HGNC gene symbols is hgnc.symbol:

<gene source = "hgnc.symbol" accession = "COL1A1"/>

Use of database identifiers specified in the MIRIAM registry insures consistent naming of sources 47 . Examples of MIRIAM in use are given in Figures 2 3.

<p>Figure 3</p>

VarioML elements extending the core schema.

VarioML elements extending the core schema. The VarioML elements describing the effect of an AIRE variant at the transcript and protein levels are flanked by the corresponding XML tags and explained in the text.

Reference sequence

Variants must always be submitted in the context of a reference sequence. LRGs are the preferred form for reference sequences 48 . LRG sequences ‘provide a stable genomic DNA framework for reporting variations with a permanent ID and core content that never changes’ 49 .

HGVS name

The name element gives the variant name. While name has an optional attribute scheme for indicating the naming scheme used, the primary name of a variant must be given using the HGVS naming scheme 43 44 . To allow machine-processing, the “>” character in an HGVS name must be encoded to “&gt;”, as defined in the XML specification 50 .

Pathogenicity

Pathogenicity has values such as: No known pathogenicity, Probably not pathogenic, Unknown, Probably pathogenic, and Pathogenic. These values meet the guidelines for reporting unclassified variants established in 2007 51 . These and alternative terms are provided in a separate SKOS vocabulary 52 .

Genetic origin

The genetic origin of a variation can be given in its own observation element. The vocabulary defined in the VarioML SKOS vocabulary can be used 53 .

Location

A variant can have multiple locations defined on different reference sequences. The location element provides precise standardized positioning of variants, giving possibility to integrate data easily with DAS services 54 and genome browsers. In Figure 2, the variant position is given using chromosomal coordinates.

Sharing policy

The inclusion of the sharing policy element in VarioML allows setting fine-grained access control policies per individual variant. Possible values are closedAccess, embargoedAccess, restrictedAccess and openAccess, which are defined in the OpenAIRE guidelines 55 . Embargo end date tells when data can be publicly released. Use permission is an ontology term which can be used for citing licensing terms. The vocabulary describing these policies is taken from the OpenAIRE specification 56 .

Additional XML elements

Additional elements, shown in Figure 3, demonstrate a first tier of extensions of the core specification. The following elements are not yet implemented in applications, and may be redefined and modified later according to community needs.

Effects on RNA and AA sequences

Effects on gene products can be given under the seq_changes observation element, which can store information on RNA and AA sequences in a recursive manner, using nested seq_changes elements. For example, a top-level variant element specifies a unique position on the genome, which can contain RNA level variants in a seq_changes sub-element, which in turn can contain corresponding AA changes in a further nested seq_changes sub-element. Consequence annotations can be assigned on these different levels, representing expert agreement about which level is causative of a given consequence.

The Variant element also has places for aliases and haplotype sets. Aliases are for legacy annotations and variations which have been named using different reference sequences. Haplotypes are sets of variants which are in cis relative to one another. These elements can be used if the main variant represents a larger sequence region containing multiple variations. Implementation of these extensions will be finalised as more experience is gained in handling such variations.

Frequency

Variants can have one or more frequency elements, each of which can use one of three formats: decimal number, number of cases, or categorized value. The decimal number type gives frequency as a floating point value; number of cases type gives frequency as a count; and the categorized value gives frequency as an ontology term, for categorized observations such as “exists” or “less than 100”. Population, evidence ontology term, evidence code, protocol id and comment attributes provide context for the frequency value.

Implementation

XML remains the reference platform of choice, providing a mature specification, and advanced tools such as schema definition languages 57 . Our use of extensible XML elements encourages implementers to collaborate closely, since extending the format requires formulating a common development strategy. However, we realized that, as the XML schema is extended, a lacuna could easily open between the data model and its implementations. Adapting changing XML schema into applications has tended to be laborious. We reasoned that absolving application developers of the need to reinvent the wheel of data translation across formats was fundamental to easing the effort and cost of adopting the VarioML standard. We further reasoned that, in biomedicine as well as in other scientific domains, the era of big data likely makes it no longer feasible to develop formats separately from the tooling that transports them bidirectionally across the required data languages (recalling the computer science maxim, ‘Data = code’ 58 59 ).

In practice, this meant that VarioML schema elements have to work transparently as XML, JSON, and possibly in future as RDF, without incurring a cost of translation to the implementer or user. Providing support for bidirectional translation to JSON was a clear way in which we could enable schema extensions to much more quickly and inexpensively be reflected in applications. To this end, VarioML comes with Java and JSON APIs (application programming interfaces), which developers can plug into their applications to handle conversion and publication.

JSON is the common data serialization format now recognized as the lingua franca for data exchange over the web (while we find no academic reference to this fact, it is a commonplace in the web application domain. e.g. 60 ), proven to be faster and consume fewer resources than XML 61 . Serializing to JSON facilitates applying programming techniques to data, to create interactive content, user interface components, etc. in formats native to the web, simplifying the provision of data access 62 . VarioML provides a JSON implementation, currently defined using JAXB 63 and Jackson 64 annotations. This JSON implementation is made available as a VarioML Java library 65 , which can be used to read and write XML and JSON versions of the format. An API is auto-generated from XML instances, providing Java object representations for all VarioML objects. This API will be kept synchronized with the format, and can be used as a helper tool in Java applications. A JSON example of the source element is shown in Figure 4.

<p>Figure 4</p>

VarioML in JSON format.

VarioML in JSON format. XML elements are mapped to JSON objects using JAXB and Jackson annotations via VarioML's Java API. Repeating XML elements become pluralised into JSON arrays. Because JSON does not have an equivalent to XML attributes, XML attribute names can clash with inner element names. In these cases, the JSON name for the XML attribute is changed. Otherwise, mapping VarioML from XML to JSON is a direct transformation of the data structure.

In addition to JSON support, the VarioML Java API supports EXI, a binary compression of XML. EXI support leverages the VarioML XML schema, reducing file sizes and the time required for data processing operations by factors of three to ten 66 . While VarioML is primarily focused on curated variant entries produced at the end of HTP pipelines, the use of EXI makes it feasible to use VarioML for earlier stages of production pipelines.

The JSON tooling provided with VarioML makes it possible for implementers to develop dynamic user interfaces with substantially less effort and cost 67 , expanding on the possibilities demonstrated by the ‘Web Analysis of the Variome’ project 68 69 . A logical next step to contribute to the end-to-end variome pipeline would be to build a variant annotator widget, usable with different database implementations.

Discussion

VarioML has been designed to immediately serve data exchange needs for LSDB’s, focusing on curated variant entries produced at the end of data production pipelines. However, as an end-to-end variation pipeline comes together, for a common specification to be truly useful, it must be extensible beyond the immediate LSDB use-case. Next-generation sequencing pipelines make possible exon-capture scenarios in which tens to hundreds of patients are sequenced in one or more genes, presenting new challenges in variant calling, annotation, and data sharing 70 . To meet the holistic data integration challenge and realize the grand variation pipeline, we need to harmonize the data models, data standards, and content specifications in use at each step, to encompass the descriptive needs of all LSDBs, standardizing their quality and accuracy, and enabling more comprehensive and high quality data curation 26 . A number of projects have previously attempted to fill these requirements and provide a single multipurpose implementation format for LSDBs, yet have come up against difficulties at multiple levels of design and implementation 11 . Variation data can be arbitrarily complex, making a single standard specification elusive. LSDB use cases vary a great deal in the depth of detail and structure needed for data capture. Complex standards have proven too time-consuming to implement. Solutions designed in one format cannot be readily transferred to another. Further hampering progress towards a common specification are the multiple strong motivations which labs have to keep variant data private 71 .

As work on a unified variome progresses, genetics research faces a paradox: another attempt at a variation standard will not be enough to surmount these obstacles. No matter how comprehensive our current efforts, new standards will inevitably follow. Our understanding of genomic variation is rapidly evolving; multiple and often conflicting forms of variant annotation seem to be required to serve differing use cases, implementations, and viewpoints. Attempts to comprehensively integrate all such descriptions in a single standard can, at this point, be expected to produce either unmanageable complexity, or inaccurate oversimplification. Furthermore, looking ahead, we can be fairly certain that new discoveries and technologies will arise that cannot be presently designed for.

In designing VarioML, we therefore turned away from seeking a top-down monolithic solution, choosing instead to make a lightweight framework for composing interoperable, use-case specific ‘micro-standards’ around the generalized concepts of observation targets, ontology terms, and observations, adapted from the Observ-OM specification 16 . The core set of VarioML schema elements can be used as building blocks, addressing use cases from the most minimal towards the more complex, while maintaining the underlying interoperability of the data. Implementations can use as many or as few of these blocks as needed, and new elements can be added into the specification as needed. However, with this extensibility also comes the danger of the fragmenting specifications into incompatible versions. While elements are utilized in an increasing number of new representations and schema, at the same time, they are also converging all variation data into a unified variome pipeline. Yet equalizing these needs for divergence and convergence is a task that cannot be planned by a committee. As next generation sequencing continues accelerating both the scale and complexity of the data produced, all producers of variation data have a stake in decreasing the gap between a general variation annotation standard, and the community it serves. Accordingly, VarioML is intended less as a ‘completed’ specification, more as a nucleation centre around which new specifications can be developed. All variation data producers are called upon to develop this specification collaboratively.

To this end, VarioML development has been turned over to the community. The specification lives inside an open collaboration framework, tightly binding new variation reporting structures to the common schema and tooling, maintaining consistent application generation capability and backwards compatibility with earlier applications and data 72 . We chose two forums to realize this collaboration framework: the VarioML forum at the science-centered GEN2PHEN Knowledge Center 73 , where format details are discussed alongside immediate access to a unified catalog of LSDBs and other tools for variation data integration; and VarioML’s GitHub repository 74 , where the schema and XML, JSON, Java, and RDF tools are available, in addition to UML documentation that clarifies the relationships between specification and implementations 75 . Modified or new compositions using schema elements must be reported in either of these forums and discussed openly, enabling the collaborative extension of the format without breaking existing implementations.

The open-ended nature of the VarioML specification means there should continuously be elements under active redefinition and modification by the community. These features should not be implemented in applications until consensus on usage is reached. For example, the Variant element allows recursive sub-elements, for cases where the reporting variant is composed of other variants located on the same or a sister chromosome. Yet this and other features (see Additional XML elements section) are not currently implemented in applications.

Conclusions

VarioML enables researchers, diagnostic laboratories, and clinics to improve the quality of human variation information, and to share that information with ease, clarity, and without ambiguity. VarioML resolves the inherent tendency of variation data to diverge in format and meaning through a modular design that lives in an open collaboration framework, composed of two linked community forums.

With this open collaboration framework, the variome community itself closely binds the evolution of the annotation format and its tooling to the science of the study of human mutations. For example, as new configurations and extensions of the format are developed by various implementers, they can be discussed and improved at the GEN2PHEN Knowledge Center, alongside submissions of relevant data made through Cafe Variome. As community consensus emerges, this agreement translates to changes in the schema and tooling in the common repository. At each step, the provenance of even small contributions are captured and can be used as microattributions 42 .

For such bottom-up, self-organizing management of a common variation standard to work, teams working at critical junctions in the variation pipeline must translate a passion for the vision of the unified variome, into both implementation and development of the shared standard. To date, VarioML has been implemented in three applications (the Leiden Open Variation Database 24 , GenSearch 36 , and BC|SNPMax 37 ), and is currently being tested in a fourth (Alamut 38 ). In each case, VarioML is used to enable push-button submission of data through the Cafe Variome service 28 .

With consensus on a minimal standard, implementation is the remaining bottleneck. Users, from research teams to commercial software producers, need to focus their software-related activity to those tasks in which their resource costs are proportionally smaller than the added value afforded by adopting new tools and data models. VarioML has been designed to minimize the effort required for both implementation and extension, framing the specification itself with Java and JSON APIs on the one hand, and an open collaboration framework on the other. We hope this approach proves useful throughout the variation science community, as it meets the challenge and potential of next generation sequencing, and quickens to open the path from discovery to delivery.

Competing interests

The authors declare no competing interests.

Authors’ contributions

MB collated the contributions of other authors, and wrote the body of the manuscript. IFACF was a central participant in defining and refining the VarioML format, as a participant in GEN2PHEN and as one of the creators of the Leiden Open Variaton Database. OL was a central participant in defining and refining the VarioML format, as a participant in GEN2PHEN and as one of the creators of the Cafe Variome data submission platform. TA participated in defining and refining the VarioML format. AAB participated in refining the VarioML format, as an implementer of the specification in the BC|SNPMax application. DA participated in refining the VarioML format, as an implementer of the specification in the Gensearch application. CB participated in defining and refining the VarioML format. MC participated in defining and refining the VarioML format. RD participated in defining and refining the VarioML format. AD participated in defining and refining the VarioML format. GP participated in defining and refining the VarioML format, as a participant in GEN2PHEN and representing the National Ethnic Mutation Databases in this activity. MS was a central participant in defining and refining the VarioML format, as a participant in GEN2PHEN and as one of the creators of Observ-OM, Pheno-OM, and the Molgenis application platform. PEMT was a central participant in defining and refining the VarioML format, as a participant in GEN2PHEN and as one of the creators of the Leiden Open Variaton Database. GT was a central participant in defining and refining the VarioML format, as a participant in GEN2PHEN and as one of the creators of the ORCID researcher identification platform. MV was a central participant in defining and refining the VarioML format, as a participant in GEN2PHEN and as the creators of the Varioation Ontology. AB was a central participant in defining and refining the VarioML format, as chair of GEN2PHEN and as one of the creators of the Cafe Variome data submission platform. JM was a central participant in defining and refining the VarioML format, as a participant in GEN2PHEN and as the managing creator of the VarioML specification. All authors participated in the design and testing of VarioML. All authors read and approved the final manuscript.

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 200754 - the GEN2PHEN project.

<p>Improving bioinformatic pipelines for exome variant calling</p>JiHGenome Medicine201247<p>An integrative variant analysis suite for whole exome next-generation sequencing data</p>ChallisDYuJEvaniUSJacksonARPaithankarSCoarfaCMilosavljevicAGibbsRAYuFLBMC Bioinformatics20121313<p>Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor</p>McLarenWPritchardBRiosDChenYAFlicekPCunninghamFBioinformatics20102620692070<p>On not reinventing the wheel</p>EditorsNat Genet201244233<p>Resources</p>GEN2PHEN Knowledge Center http://www.gen2phen.org/resources <p>Recommendations for locus-specific databases and their curation</p>CottonRGHAuerbachADBeckmannJSBlumenfeldOOBrookesAJBrownAFCarreraPCoxDWGottliebBGreenblattMSHum Mutat20082925<p>GEN2PHEN LSDB Listing</p> http://www.gen2phen.org/data/lsdbs <p>Sharing Data between LSDBs and Central Repositories</p>den DunnenJTSijmonsRHAndersenPSVihinenMBeckmannJSRossettiSTalbotCCHardisonRCPoveySCottonRGHHum Mutat200930493495<p>Locus-specific database domain and data content analysis: evolution and content maturation toward clinical use</p>MitropoulouCWebbAJMitropoulosKBrookesAJPatrinosGPHum Mutat20103111091116KuntzerJEggleDKlostermannSBurtscherHHuman variation databasesDatabase, Oxford)20102010:baq015<p>DNA, diseases and databases: disastrously deficient</p>PatrinosGPBrookesAJTrends Genet200521333338<p>Curating Gene Variant Databases (LSDBs): Toward a Universal Standard</p>CelliJDalgleishRVihinenMTaschnerPEMden DunnenJTHum Mutat201233291297<p>Analysis of next-generation genomic data in cancer: accomplishments and challenges</p>DingLWendlMCKoboldtDCMardisERHum Mol Genet201019R188196<p>Planning the human variome project: the Spain report</p>KaputJCottonRGHardmanLWatsonMAl AqeelAIAl-AamaJYAl-MullaJYAlonsoSAretzSAuerbachADHum Mutat200930496510<p>The Phenotype and Genotype Experiment Object Model (PaGE-OM): A Robust Data Structure for Information Related to DNA Variation</p>BrookesAJLehvaslaihoHMuiluJShigemotoYOroguchiTTomikiTMukaiyamaAKonagayaAKojimaTInoueIHum Mutat200930968977<p>Observ-OM and Observ-TAB: Universal syntax solutions for the integration, search, and exchange of phenotype and genotype information</p>AdamusiakTParkinsonHMuiluJRoosEvan der VeldeKJThorissonGAByrneMPangCGollapudiSFerrettiVHum Mutat201233586773TyrelleGKingGCA platform for the description, distribution and analysis of genetic polymorphism dataProceedings of the First Asia-Pacific bioinformatics conference on, Bioinformatics2003<p>Genomic Sequence Variation Markup Language (GSVML)</p>NakayaJKimuraMHiroiKIdoKYangWTanakaHInt J Med Inform201079130142<p>PAGE-OM Markup Language</p> http://www.openpml.org/ VCF (Variant Call Format) Specification http://vcftools.sourceforge.net/specs.html <p>The variant call format and VCFtools</p>DanecekPAutonAAbecasisGAlbersCABanksEDePristoMAHandsakerRELunterGMarthGTSherrySTBioinformatics20112721562158<p>A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB</p>RaynerTFRocca-SerraPSpellmanPTCaustonHCFarneAHollowayEIrizarryRALiuJMaierDSMillerMBMC Bioinformatics20067489489JeliffeRThe Schematron Assertion Language http://www.ascc.net/xml/resource/schematron/Schematron2000.html <p>LOVD v.2.0: the next generation in gene variant databases</p>FokkemaIFTaschnerPESchaafsmaGCCelliJLarosJFden DunnenJTHum Mutat2011325557563<p>XGAP: a uniform and extensible data model and software platform for genotype and phenotype experiments</p>SwertzMAVeldeKJTessonBMScheltemaRAArendsDVeraGAlbertsRDijkstraMSchofieldPSchughartKGenome Biol201011R27<p>Guidelines for establishing locus specific databases</p>VihinenMden DunnenJTDalgleishRCottonRGHHum Mutat201233298305<p>How to catch all those mutations–the report of the third Human Variome Project Meeting, UNESCO Paris, May 2010</p>Kohonen-CorishMRJAl-AamaJYAuerbachADAxtonMBarashCIBernsteinIBeroudCBurnJCunninghamFCuttingGRHum Mutat20103113741381Cafe Variome http://cafevariome.org/ RELAXNG Home Page http://relaxng.org <p>The human phenotype ontology</p>RobinsonPNMundlosSClin Genet201077525534<p>The Sequence Ontology: a tool for the unification of genome annotations</p>EilbeckKLewisSEMungallCJYandellMSteinLDurbinRAshburnerMGenome Biol20056R44:112VihinenMVariation Ontology http://variationontology.org/ <p>SKOS (Simple Knowledge Organization System) Home Page</p> http://www.w3.org/2004/02/skos/ <p>D2RQ - Treating Non-RDF Databases as Virtual RDF Graphs</p>BizerASISWC20042004<p>Towards pharmacogenomics knowledge discovery with the semantic web</p>DumontierMVillanueva-RosalesNBrief Bioinform200910153163Phenosystems http://www.phenosystems.com BC Platforms - Genotype Data Management http://www.bcplatforms.com/Solutions/Genotype-Data-Management.html Interactive Biosoftware http://www.interactive-biosoftware.com Evidence Ontology http://code.google.com/p/evidenceontology/ Open Researcher and Contributor ID (ORCID) http://orcid.org/ <p>ORCID: UNIQUE IDENTIFIERS for AUTHORS AND CONTRIBUTORS</p>FennerMInformation Standards Quarterly2011231013<p>Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach</p>GiardineBBorgJHiggsDRPetersonKRPhilipsenSMaglottDSingletonBKAnsteeDJBasakANClarkBNat Genet201143295301den DunnenJNomenclature for the description of sequence variants http://www.hgvs.org/mutnomen/ <p>A formalized description of the standard human variant nomenclature in Extended Backus-Naur Form</p>LarosJFBlavierAden DunnenJTTaschnerPEBMC Bioinformatics201112Suppl 4S5HGNC Searches http://www.genenames.org/hgnc-searches <p>Identifiers.org and MIRIAM Registry: community resources to provide persistent identification</p>JutyNLe NovèreNLaibeCNucleic Acids Res201240580586MIRIAM Registry http://www.ebi.ac.uk/miriam/main/ Locus Reference Genomic (LRG) sequences http://www.lrg-sequence.org <p>Locus Reference Genomic sequences: an improved basis for describing human DNA variants</p>DalgleishRFlicekPCunninghamFAstashynATullyREProctorGChenYMcLarenWMLarssonPVaughanBWGenome Med201022424Cafe Variome Minimum Information SpecificationVariant name element http://varioml.org/cafevariome_minspec.htm#variant_name Bell JBDSistermansERamsdenSCPractice guidelines for the interpretation and reporting of unclassified variants (UVs) in clinical molecular genetics. Guidelines ratified by the UK CMGS (11th January, 2008) and the VGKL (22nd October, 2007)2007A CMGS e-publication [http://www.cmgs.org/BPGs/Best_Practice_Guidelines.htm]SKOS PathogenicityTurtle RDF file http://purl.org/varioml/pathogenicity/skos/1.0/ SKOS Genetic originTurtle RDF file http://purl.org/varioml/genetic_origin/skos/1.0/ <p>Integrating biological data--the Distributed Annotation System</p>JenkinsonAMAlbrechtMBirneyEBlankenburgHDownTFinnRDHermjakobHHubbardTJPJimenezRCJonesPBMC Bioinformatics20089Suppl 8S3:17OpenAIRE Guidelines 1.1 (PDF) http://www.openaire.eu/en/component/attachments/download/79 OpenAIRE Access Rights http://wiki.surf.nl/display/standards/info-eu-repo/#info-eu-repo-AccessRights <p>Revolutionary impact of XML on biomedical information interoperability</p>ShaboARabinovici-CohenSVortmanPIbm Syst J200645361372Data is Code http://wiki.tcl.tk/17869 AbelsonHSussmanJSussmanJStructure and Interpretation of Computer Programs1984JSON, data and the REST http://webofdata.wordpress.com/2011/08/07/json-data-and-the-rest/ <p>Comparison of JSON and XML Data Interchange Formats: A Case Study</p>NurseitovNPaulsonMReynoldsRIzurietaCScenario200959715157162Javascript Object Notation (JSON) http://en.wikipedia.org/wiki/JSON Project JAX-B http://jaxb.java.net/ Jackson JSON Processor Home http://wiki.fasterxml.com/JacksonHome VarioML Java Library https://github.com/VarioML/VarioML/tree/master/src/java/varioml Efficient XML Interchange Working Group http://www.w3.org/XML/EXI/ <p>Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases</p>KobayashiNIshiiMTakahashiSMochizukiYMatsushimaAToyodaTNucleic Acids Res201139533540Web Analysis of the Variome http://bioinformatics.ua.pt/WAVe/ <p>WAVe: web analysis of the variome</p>LopesPDalgleishROliveiraJLHum Mutat201132729734<p>CNVs from exome sequencing</p>MakCNat Biotech201230626626<p>When Scientists Don’t Share: Is Secrecy a Necessary Evil?</p>BenowitzSJNCI200210712713<p>Research issues in database schema evolution: the road not taken</p>RamSShankaranarayananGBoston University School of Management, Department of Information Systems, Working Paper. #2003-152003VarioML User and Developer Group http://www.gen2phen.org/groups/varioml VarioML Repository https://github.com/VarioML/VarioML VarioML Simplified UML Model https://raw.github.com/VarioML/VarioML/master/xml/lsdb_main/uml/varioml.jpg