B. C. Arnold, E. Castillo, and J. M. Sarabia, Conditionally specified distributions: an introduction, Statistical Science, vol.73, issue.3, pp.249-274, 2001.
DOI : 10.1007/978-1-4612-2912-4

J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, issue.3, pp.839-851, 2005.
DOI : 10.1016/j.neuroimage.2005.02.018

D. Benboudjema and W. Pieczynski, Unsupervised image segmentation using triplet Markov fields, Computer Vision and Image Understanding, vol.99, issue.3, pp.476-498, 2005.
DOI : 10.1016/j.cviu.2005.04.003

URL : https://hal.archives-ouvertes.fr/hal-01347961

J. Besag, Spatial interaction and the statistical analysis of lattice systems, J. Roy. Statist. Soc. Ser. B, vol.36, issue.2, pp.192-236, 1974.

J. Besag, Statistical analysis of dirty pictures*, Journal of Applied Statistics, vol.6, issue.5-6, pp.259-302, 1986.
DOI : 10.1016/0031-3203(83)90012-2

M. J. Black and A. Rangarajan, On the unification of line processes, outlier rejection, and robust statistics with applications in early vision, International Journal of Computer Vision, vol.8, issue.4, pp.57-91, 1996.
DOI : 10.1007/BF00131148

W. Byrne and A. Gunawardana, Convergence theorems of Generalized Alternating Minimization Procedures, J. Machine Learning Research, vol.6, pp.2049-2073, 2005.

V. Cadez, S. Gaffney, and P. Smyth, A general probabilistic framework for clustering individuals and objects, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, pp.140-149, 2000.
DOI : 10.1145/347090.347119

G. Celeux, F. Forbes, and N. Peyrard, EM procedures using mean field-like approximations for Markov model-based image segmentation, Pattern Recognition, vol.36, issue.1, pp.131-144, 2003.
DOI : 10.1016/S0031-3203(02)00027-4

URL : https://hal.archives-ouvertes.fr/inria-00072526

D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani et al., Design and construction of a realistic digital brain phantom, IEEE Transactions on Medical Imaging, vol.17, issue.3, pp.463-468, 1998.
DOI : 10.1109/42.712135

L. R. Dice, Measures of the Amount of Ecologic Association Between Species, Ecology, vol.26, issue.3, pp.297-302, 1945.
DOI : 10.2307/1932409

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2004.

D. Geman and G. Reynolds, Constrained restoration and the recovery of discontinuities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.3, pp.376-383, 1992.
DOI : 10.1109/34.120331

S. Geman and D. Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.6, issue.6, pp.721-741, 1984.
DOI : 10.1109/TPAMI.1984.4767596

H. Georgii, Gibbs measures and phase transitions, 1988.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie, Dependency networks for inference, collaborative filtering and data visualization, J. Machine Learning Research, vol.1, pp.49-75, 2000.

F. Heitz and P. Bouthemy, Multimodal estimation of discontinuous optical flow using Markov random fields, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.15, issue.12, pp.1217-1232, 1993.
DOI : 10.1109/34.250841

URL : https://hal.archives-ouvertes.fr/inria-00075193

M. Jenkinson and S. M. Smith, A global optimisation method for robust affine registration of brain images, Medical Image Analysis, vol.5, issue.2, pp.143-156, 2001.
DOI : 10.1016/S1361-8415(01)00036-6

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, An Introduction to Variational Methods for Graphical Models, Learning in Graphical Models, pp.105-162, 1999.
DOI : 10.1007/978-94-011-5014-9_5

S. Kumar and M. Hebert, Discriminative Random Fields, International Journal of Computer Vision, vol.21, issue.1, pp.179-201, 2006.
DOI : 10.1007/s11263-006-7007-9

G. J. Mclachlan and T. Krishnan, The EM Algorithm and Extensions, 1996.

R. Narasimha, E. Arnaud, F. Forbes, and R. Horaud, Cooperative disparity and object boundary estimation, 2008 15th IEEE International Conference on Image Processing, pp.1784-1787, 2008.
DOI : 10.1109/ICIP.2008.4712122

URL : https://hal.archives-ouvertes.fr/inria-00306582

K. M. Pohl, J. Fisher, E. Grimson, R. Kikinis, and W. Wells, A Bayesian model for joint segmentation and registration, NeuroImage, vol.31, issue.1, pp.31228-239, 2006.
DOI : 10.1016/j.neuroimage.2005.11.044

M. J. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, The Computer Journal, vol.7, issue.2, 1964.
DOI : 10.1093/comjnl/7.2.155

B. Scherrer, M. Dojat, F. Forbes, and C. Garbay, LOCUS: LOcal Cooperative Unified Segmentation of MRI Brain Scans, MICCAI 2007, pp.219-227, 2007.
DOI : 10.1007/978-3-540-75757-3_27

URL : https://hal.archives-ouvertes.fr/inserm-00402276

B. Scherrer, F. Forbes, C. Garbay, and M. Dojat, Distributed Local MRF Models for Tissue and Structure Brain Segmentation, IEEE Transactions on Medical Imaging, vol.28, issue.8, pp.1296-1307, 2009.
DOI : 10.1109/TMI.2009.2014459

URL : https://hal.archives-ouvertes.fr/inserm-00402265

D. W. Shattuck, S. R. Sandor-leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, Magnetic Resonance Image Tissue Classification Using a Partial Volume Model, NeuroImage, vol.13, issue.5, pp.856-876, 2001.
DOI : 10.1006/nimg.2000.0730

J. Sun, N. Zheng, and H. Shum, Stereo Matching Using Belief Propagation, IEEE trans. Pat. Anal. Mach. Intell, vol.25, pp.787-800, 2003.
DOI : 10.1007/3-540-47967-8_34

K. Van-leemput, F. Maes, D. Vandermeulen, and P. Suetens, Automated model-based bias field correction of MR images of the brain, IEEE Transactions on Medical Imaging, vol.18, issue.10, pp.885-896, 1999.
DOI : 10.1109/42.811268

S. K. Warfield, K. H. Zou, and W. M. Wells, Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation, IEEE Transactions on Medical Imaging, vol.23, issue.7, pp.903-921, 2004.
DOI : 10.1109/TMI.2004.828354

Y. Zhang, M. Brady, and S. Smith, Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm, IEEE Transactions on Medical Imaging, vol.20, issue.1, pp.45-47, 2001.
DOI : 10.1109/42.906424