T. Yoshida and R. Tuder, Pathobiology of Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease, Physiological Reviews, vol.87, issue.3, pp.1047-1082, 2007.
DOI : 10.1152/physrev.00048.2006

C. Mathers and D. Loncar, Projections of Global Mortality and Burden of Disease from 2002 to 2030, PLoS Medicine, vol.52, issue.11, p.442, 2002.
DOI : 10.1371/journal.pmed.0030442.st007

R. Abboud and S. Vimalanathan, Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema, Int J Tuberc Lung Dis, vol.12, issue.4, pp.361-367, 2008.

A. Nel, T. Xia, L. Madler, and N. Li, Toxic Potential of Materials at the Nanolevel, Science, vol.311, issue.5761, pp.311622-627, 2006.
DOI : 10.1126/science.1114397

J. Boczkowski and P. Hoet, What's new in nanotoxicology? Implications for public health from a brief review of the 2008 literature, Nanotoxicology, vol.107, issue.2, pp.1-14, 2011.
DOI : 10.1038/nnano.2008.111

R. Baan, Working Group, Inhalation Toxicology, vol.288, issue.1, pp.213-228, 2007.
DOI : 10.1136/oem.59.2.98

H. Johnston, G. Hutchison, F. Christensen, S. Peters, S. Hankin et al., toxicity of carbon nanotubes: The contribution of physico-chemical characteristics, Nanotoxicology, vol.5, issue.1, pp.207-246, 2010.
DOI : 10.1021/nl071303v

D. Warheit, T. Webb, K. Reed, S. Frerichs, and C. Sayes, Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties, Toxicology, vol.230, issue.1, pp.90-104, 2007.
DOI : 10.1016/j.tox.2006.11.002

A. Yazdi, G. Guarda, N. Riteau, S. Drexler, A. Tardivel et al., Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1?? and IL-1??, Proceedings of the National Academy of Sciences, vol.107, issue.45, pp.19449-19454, 2010.
DOI : 10.1073/pnas.1008155107

A. Churg, B. Stevens, and J. Wright, Comparison of the uptake of fine and ultrafine TiO2 in a tracheal explant system, Am J Physiol, vol.274, issue.1, pp.81-86, 1998.

H. Chen, S. Su, C. Chien, W. Lin, S. Yu et al., Titanium dioxide nanoparticles induce emphysema-like lung injury in mice, The FASEB Journal, vol.20, issue.13, pp.202393-2395, 2006.
DOI : 10.1096/fj.06-6485fje

P. Hext, Current Perspectives on Particulate Induced Pulmonary Tumours, Human & Experimental Toxicology, vol.13, issue.1, pp.700-715, 1994.
DOI : 10.1177/096032719401301009

R. Bachoual, J. Boczkowski, D. Goven, N. Amara, L. Tabet et al., Biological Effects of Particles from the Paris Subway System, Chemical Research in Toxicology, vol.20, issue.10, pp.201426-1433, 2007.
DOI : 10.1021/tx700093j

K. Fujita, M. Horie, H. Kato, S. Endoh, M. Suzuki et al., Effects of ultrafine TiO2 particles on gene expression profile in human keratinocytes without illumination: Involvement of extracellular matrix and cell adhesion, Toxicology Letters, vol.191, issue.2-3, pp.2-3109, 2009.
DOI : 10.1016/j.toxlet.2009.08.011

L. Raymond, S. Eck, J. Mollmark, E. Hays, I. Tomek et al., Interleukin-1 beta induction of matrix metalloproteinase-1 transcription in chondrocytes requires ERK-dependent activation of CCAAT enhancer-binding protein-beta, Journal of Cellular Physiology, vol.41, issue.3, pp.683-688, 2006.
DOI : 10.1002/jcp.20608

S. Hussain, L. Thomassen, I. Ferecatu, M. Borot, K. Andreau et al., Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells, Particle and Fibre Toxicology, vol.7, issue.1, p.10, 2010.
DOI : 10.1186/1743-8977-7-10

URL : https://hal.archives-ouvertes.fr/inserm-00668461

S. Val, S. Hussain, S. Boland, R. Hamel, A. Baeza-squiban et al., Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: Need for multiparametric evaluation due to adsorption artifacts, Inhalation Toxicology, vol.6, issue.4, pp.115-122, 2009.
DOI : 10.3109/01902149809046056

K. Inoue, R. Yanagisawa, E. Koike, R. Nakamura, T. Ichinose et al., Effects of Carbon Black Nanoparticles on Elastase-Induced Emphysematous Lung Injury in Mice, Basic & Clinical Pharmacology & Toxicology, vol.10, issue.Suppl 1, pp.234-240, 2011.
DOI : 10.1111/j.1742-7843.2010.00638.x

R. Mercer and J. Crapo, Structural changes in elastic fibers after pancreatic elastase administration in hamsters, J Appl Physiol, vol.72, issue.4, pp.1473-1479, 1992.

M. Sawada, Y. Ohno, B. La, N. Funaguchi, T. Asai et al., THE FAS/FAS-LIGAND PATHWAY DOES NOT MEDIATE THE APOPTOSIS IN ELASTASE-INDUCED EMPHYSEMA IN MICE, Experimental Lung Research, vol.2, issue.6, pp.33277-288, 2007.
DOI : 10.1016/S0002-9440(10)63953-3

S. Tasaka, K. Inoue, K. Miyamoto, Y. Nakano, H. Kamata et al., Role of interleukin-6 in elastase-induced lung inflammatory changes in mice, Experimental Lung Research, vol.93, issue.6, pp.36362-372, 2010.
DOI : 10.1186/1465-9921-6-11

B. Fubini, M. Ghiazza, and I. Fenoglio, Physico-chemical features of engineered nanoparticles relevant to their toxicity, Nanotoxicology, vol.28, issue.5, pp.347-363, 2010.
DOI : 10.1080/08958370701353080

D. Elgrabli, S. Abella-gallart, O. Aguerre-chariol, F. Robidel, F. Rogerieux et al., studies, Nanotoxicology, vol.6, issue.6, pp.266-278, 2007.
DOI : 10.1016/j.toxlet.2006.08.019

URL : https://hal.archives-ouvertes.fr/ineris-00963096

L. Boyer, L. Plantier, M. Dagouassat, S. Lanone, D. Goven et al., Role of nitric oxide synthases in elastase-induced emphysema, Laboratory Investigation, vol.79, issue.3, pp.91353-362, 2011.
DOI : 10.1172/JCI200421146

K. Elekes, Z. Helyes, L. Kereskai, K. Sandor, E. Pinter et al., Inhibitory effects of synthetic somatostatin receptor subtype 4 agonists on acute and chronic airway inflammation and hyperreactivity in the mouse, European Journal of Pharmacology, vol.578, issue.2-3, pp.2-3313, 2008.
DOI : 10.1016/j.ejphar.2007.09.033

L. Plantier, S. Marchand-adam, V. Antico, L. Boyer, D. Coster et al., Keratinocyte growth factor protects against elastase-induced pulmonary emphysema in mice, AJP: Lung Cellular and Molecular Physiology, vol.293, issue.5
DOI : 10.1152/ajplung.00460.2006

L. Knudsen, E. Weibel, H. Gundersen, F. Weinstein, and M. Ochs, Assessment of air space size characteristics by intercept (chord) measurement: an accurate and efficient stereological approach, Journal of Applied Physiology, vol.108, issue.2, pp.412-421, 2010.
DOI : 10.1152/japplphysiol.01100.2009

C. Hsia, D. Hyde, M. Ochs, and E. Weibel, How to measure lung structure???What for? On the ???Standards for the Quantitative Assessment of Lung Structure???, Respiratory Physiology & Neurobiology, vol.171, issue.2, pp.72-74, 2010.
DOI : 10.1016/j.resp.2010.02.016

W. Mehnert and K. Mader, Solid lipid nanoparticles Production, characterization and applications, Advanced Drug Delivery Reviews, vol.47, issue.2-3, pp.2-3165, 2001.
DOI : 10.1016/S0169-409X(01)00105-3

G. Oberdorster, J. Ferin, and B. Lehnert, Correlation between particle size, in vivo particle persistence, and lung injury, Environmental Health Perspectives, vol.102, issue.Suppl 5, pp.173-179, 1994.
DOI : 10.1289/ehp.94102s5173

M. Yokohira, T. Kuno, K. Yamakawa, K. Hosokawa, Y. Matsuda et al., Lung Toxicity of 16 Fine Particles on Intratracheal Instillation in a Bioassay Model Using F344 Male Rats, Toxicologic Pathology, vol.53, issue.4, pp.620-631, 2008.
DOI : 10.1177/0192623308318214

T. Sager and V. Castranova, Surface area of particle administered versus mass in determining the pulmonary toxicity of ultrafine and fine carbon black: comparison to ultrafine titanium dioxide, Particle and Fibre Toxicology, vol.6, issue.1, p.15, 2009.
DOI : 10.1186/1743-8977-6-15

W. Van-dijk, S. Gopal, and P. Scheepers, Nanoparticles in cigarette smoke; real-time undiluted measurements by a scanning mobility particle sizer, Analytical and Bioanalytical Chemistry, vol.17, issue.Suppl 1, pp.3993573-3578, 2011.
DOI : 10.1007/s00216-011-4701-4

Y. Ishii, K. Itoh, Y. Morishima, T. Kimura, T. Kiwamoto et al., Transcription Factor Nrf2 Plays a Pivotal Role in Protection against Elastase-Induced Pulmonary Inflammation and Emphysema, The Journal of Immunology, vol.175, issue.10, pp.1756968-6975, 2005.
DOI : 10.4049/jimmunol.175.10.6968

J. Wright, M. Cosio, and A. Churg, Animal models of chronic obstructive pulmonary disease, AJP: Lung Cellular and Molecular Physiology, vol.295, issue.1, pp.1-15, 2008.
DOI : 10.1152/ajplung.90200.2008

A. Houghton, P. Quintero, D. Perkins, D. Kobayashi, D. Kelley et al., Elastin fragments drive disease progression in a murine model of emphysema, Journal of Clinical Investigation, vol.116, issue.3, pp.753-759, 2006.
DOI : 10.1172/JCI25617

T. Maeno, A. Houghton, P. Quintero, S. Grumelli, C. Owen et al., CD8+ T Cells Are Required for Inflammation and Destruction in Cigarette Smoke-Induced Emphysema in Mice, The Journal of Immunology, vol.178, issue.12, pp.1788090-8096, 2007.
DOI : 10.4049/jimmunol.178.12.8090

C. Monteiller, L. Tran, W. Macnee, S. Faux, A. Jones et al., The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area, Occupational and Environmental Medicine, vol.64, issue.9, pp.609-615, 2007.
DOI : 10.1136/oem.2005.024802

G. Oberdorster, E. Oberdorster, and J. Oberdorster, Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles, Environmental Health Perspectives, vol.113, issue.7, pp.823-839, 2005.
DOI : 10.1289/ehp.7339

S. Singh, T. Shi, R. Duffin, C. Albrecht, D. Van-berlo et al., Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: Role of the specific surface area and of surface methylation of the particles, Toxicology and Applied Pharmacology, vol.222, issue.2, pp.141-151, 2007.
DOI : 10.1016/j.taap.2007.05.001

T. Stoeger, C. Reinhard, S. Takenaka, A. Schroeppel, E. Karg et al., Instillation of Six Different Ultrafine Carbon Particles Indicates a Surface Area Threshold Dose for Acute Lung Inflammation in Mice, Environmental Health Perspectives, vol.114, issue.3, pp.328-333, 2006.
DOI : 10.1289/ehp.8266

S. Hussain, S. Boland, A. Baeza-squiban, R. Hamel, L. Thomassen et al., Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount, Toxicology, vol.260, issue.1-3, pp.1-3142, 2009.
DOI : 10.1016/j.tox.2009.04.001

S. Hussain, J. Vanoirbeek, K. Luyts, D. Vooght, V. Verbeken et al., Lung exposure to nanoparticles modulates an asthmatic response in a mouse model, European Respiratory Journal, vol.37, issue.2, pp.299-309, 2011.
DOI : 10.1183/09031936.00168509

A. Almolki, A. Guenegou, S. Golda, L. Boyer, M. Benallaoua et al., Heme Oxygenase-1 Prevents Airway Mucus Hypersecretion Induced by Cigarette Smoke in Rodents and Humans, The American Journal of Pathology, vol.173, issue.4, pp.981-992, 2008.
DOI : 10.2353/ajpath.2008.070863

A. Guenegou, B. Leynaert, J. Benessiano, I. Pin, P. Demoly et al., Association of lung function decline with the heme oxygenase-1 gene promoter microsatellite polymorphism in a general population sample. Results from the European Community Respiratory Health Survey (ECRHS), France, Journal of Medical Genetics, vol.43, issue.8, pp.43-43, 2006.
DOI : 10.1136/jmg.2005.039743

J. Li, S. Muralikrishnan, C. Ng, L. Yung, and B. Bay, Nanoparticle-induced pulmonary toxicity, Experimental Biology and Medicine, vol.34, issue.9, pp.1025-1033
DOI : 10.1021/nn800596w

N. Kobayashi, M. Naya, S. Endoh, J. Maru, K. Yamamoto et al., Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: Different short- and long-term post-instillation results, Toxicology, vol.264, issue.1-2, pp.110-118, 2009.
DOI : 10.1016/j.tox.2009.08.002

A. Cobos-correa, J. Trojanek, S. Diemer, M. Mall, and C. Schultz, Membrane-bound FRET probe visualizes MMP12 activity in pulmonary inflammation, Nature Chemical Biology, vol.27, issue.9, pp.628-630, 2009.
DOI : 10.1038/nchembio.196

R. Hautamaki, D. Kobayashi, R. Senior, and S. Shapiro, Requirement for Macrophage Elastase for Cigarette Smoke-Induced Emphysema in Mice, Science, vol.277, issue.5334, pp.2002-2004, 1997.
DOI : 10.1126/science.277.5334.2002

G. Hunninghake, M. Cho, Y. Tesfaigzi, M. Soto-quiros, L. Avila et al., Lung Function, and COPD in High-Risk Populations, New England Journal of Medicine, vol.361, issue.27, pp.3612599-2608, 2009.
DOI : 10.1056/NEJMoa0904006

M. Lavigne and M. Eppihimer, Cigarette smoke condensate induces MMP-12 gene expression in airway-like epithelia, Biochemical and Biophysical Research Communications, vol.330, issue.1, pp.194-203, 2005.
DOI : 10.1016/j.bbrc.2005.02.144

T. Ishikawa, K. Aoshiba, N. Yokohori, and A. Nagai, Macrophage Colony-Stimulating Factor Aggravates Rather than Regenerates Emphysematous Lungs in Mice, Respiration, vol.73, issue.4, pp.538-545, 2006.
DOI : 10.1159/000092545

S. Inoue, H. Nakamura, K. Otake, H. Saito, K. Terashita et al., Impaired Pulmonary Inflammatory Responses Are a Prominent Feature of Streptococcal Pneumonia in Mice with Experimental Emphysema, American Journal of Respiratory and Critical Care Medicine, vol.167, issue.5, pp.764-770, 2003.
DOI : 10.1164/rccm.2105111

B. Pang, W. Hong, S. West-barnette, N. Kock, and W. Swords, Diminished ICAM-1 Expression and Impaired Pulmonary Clearance of Nontypeable Haemophilus influenzae in a Mouse Model of Chronic Obstructive Pulmonary Disease/Emphysema, Infection and Immunity, vol.76, issue.11, pp.764959-4967, 2008.
DOI : 10.1128/IAI.00664-08