D. Baker and A. Sali, Protein Structure Prediction and Structural Genomics, Science, vol.294, issue.5540, pp.93-96, 2001.
DOI : 10.1126/science.1065659

D. Byers and H. Gong, Acyl carrier protein: structure???function relationships in a conserved multifunctional protein family, Biochemistry and Cell Biology, vol.85, issue.6, pp.649-662, 2007.
DOI : 10.1139/O07-109

I. Choi and S. Kim, Evolution of protein structural classes and protein sequence families, Proceedings of the National Academy of Sciences, vol.103, issue.38, pp.14056-14061, 2006.
DOI : 10.1073/pnas.0606239103

C. Chothia and A. Lesk, The relation between the divergence of sequence and structure in proteins, EMBO J, vol.5, pp.823-826, 1986.

T. Flores, C. Orengo, D. Moss, and J. Thornton, Comparison of conformational characteristics in structurally similar protein pairs, Protein Science, vol.173, issue.11, pp.1811-1826, 1993.
DOI : 10.1002/pro.5560021104

R. Goldstein, The structure of protein evolution and the evolution of protein structure, Current Opinion in Structural Biology, vol.18, issue.2, pp.170-177, 2008.
DOI : 10.1016/j.sbi.2008.01.006

F. Salemme, M. Miller, and S. Jordan, Structural convergence during protein evolution., Proceedings of the National Academy of Sciences, vol.74, issue.7, pp.2820-2824, 1977.
DOI : 10.1073/pnas.74.7.2820

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC431305

J. Thornton, C. Orengo, A. Todd, and F. Pearl, Protein folds, functions and evolution, Journal of Molecular Biology, vol.293, issue.2, pp.333-342, 1999.
DOI : 10.1006/jmbi.1999.3054

M. Dayhoff, R. Eck, and . Eck, A model of evolutionary change in proteins. Atlas of protein sequence and structure, National Biomedical Research Foundation, 1972.

G. Gonnet, M. Cohen, and S. Benner, Exhaustive matching of the entire protein sequence database, Science, vol.256, issue.5062, pp.1443-1445, 1992.
DOI : 10.1126/science.1604319

D. Jones, W. Taylor, and J. Thornton, The rapid generation of mutation data matrices from protein sequences, Bioinformatics, vol.8, issue.3, pp.275-282, 1992.
DOI : 10.1093/bioinformatics/8.3.275

N. Goldman, J. Thorne, and D. Jones, Assessing the impact of secondary structure and solvent accessibility on protein evolution, Genetics, vol.149, pp.445-458, 1998.

R. Luthy, A. Mclachlan, and D. Eisenberg, Secondary structure-based profiles: Use of structure-conserving scoring tables in searching protein sequence databases for structural similarities, Proteins: Structure, Function, and Genetics, vol.243, issue.3, pp.229-239, 1991.
DOI : 10.1002/prot.340100307

J. Overington, M. Johnson, A. Sali, and T. Blundell, Tertiary Structural Constraints on Protein Evolutionary Diversity: Templates, Key Residues and Structure Prediction, Proceedings of the Royal Society B: Biological Sciences, vol.241, issue.1301, pp.132-145, 1990.
DOI : 10.1098/rspb.1990.0077

J. Thorne, N. Goldman, and D. Jones, Combining protein evolution and secondary structure, Molecular Biology and Evolution, vol.13, issue.5, pp.666-673, 1996.
DOI : 10.1093/oxfordjournals.molbev.a025627

URL : http://mbe.oxfordjournals.org/cgi/content/short/13/5/666

C. Topham, A. Mcleod, F. Eisenmenger, J. Overington, and M. Johnson, Fragment Ranking in Modelling of Protein Structure, Journal of Molecular Biology, vol.229, issue.1, pp.194-220, 1993.
DOI : 10.1006/jmbi.1993.1018

H. Wako and T. Blundell, Use of Amino Acid Environment-dependent Substitution Tables and Conformational Propensities in Structure Prediction from Aligned Sequences of Homologous Proteins. II. Secondary Structures, Journal of Molecular Biology, vol.238, issue.5, pp.693-708, 1994.
DOI : 10.1006/jmbi.1994.1330

H. Wako and T. Blundell, Use of Amino Acid Environment-dependent Substitution Tables and Conformational Propensities in Structure Prediction from Aligned Sequences of Homologous Proteins I. Solvent Accessibility Classes, Journal of Molecular Biology, vol.238, issue.5, pp.682-692, 1994.
DOI : 10.1006/jmbi.1994.1329

T. Przytycka, A. R. Rose, and G. , A protein taxonomy based on secondary structure, Nat Struct Biol, vol.6, pp.672-682, 1999.

A. Panchenko, Y. Wolf, L. Panchenko, and T. Madej, Evolutionary plasticity of protein families: Coupling between sequence and structure variation, Proteins: Structure, Function, and Bioinformatics, vol.301, issue.Suppl 1, pp.535-544, 2005.
DOI : 10.1002/prot.20644

C. Castillo-davis, F. Kondrashov, D. Hartl, and R. Kulathinal, The Functional Genomic Distribution of Protein Divergence in Two Animal Phyla: Coevolution, Genomic Conflict, and Constraint, Genome Research, vol.14, issue.5, pp.802-811, 2004.
DOI : 10.1101/gr.2195604

D. Petrov, Mutational Equilibrium Model of Genome Size Evolution, Theoretical Population Biology, vol.61, issue.4, pp.531-544, 2002.
DOI : 10.1006/tpbi.2002.1605

S. Sandhya, S. Rani, B. Pankaj, M. Govind, and B. Offmann, Length Variations amongst Protein Domain Superfamilies and Consequences on Structure and Function, PLoS ONE, vol.58, issue.3, p.4981, 2009.
DOI : 10.1371/journal.pone.0004981.s008

URL : https://hal.archives-ouvertes.fr/hal-01198473

L. Aravind, R. Mazumder, S. Vasudevan, and E. Koonin, Trends in protein evolution inferred from sequence and structure analysis, Current Opinion in Structural Biology, vol.12, issue.3, pp.392-399, 2002.
DOI : 10.1016/S0959-440X(02)00334-2

H. Jiang and C. Blouin, Insertions and the emergence of novel protein structure: a structure-based phylogenetic study of insertions, BMC Bioinformatics, vol.8, issue.1, p.444, 2007.
DOI : 10.1186/1471-2105-8-444

D. Shortle and J. Sondek, The emerging role of insertions and deletions in protein engineering, Current Opinion in Biotechnology, vol.6, issue.4, pp.387-393, 1995.
DOI : 10.1016/0958-1669(95)80067-0

J. Sondek and D. Shortle, Accommodation of single amino acid insertions by the native state of staphylococcal nuclease, Proteins: Structure, Function, and Genetics, vol.264, issue.4, pp.299-305, 1990.
DOI : 10.1002/prot.340070402

M. Taylor, C. Ponting, and R. Copley, Occurrence and Consequences of Coding Sequence Insertions and Deletions in Mammalian Genomes, Genome Research, vol.14, issue.4, pp.555-566, 2004.
DOI : 10.1101/gr.1977804

S. Pascarella and P. Argos, Analysis of insertions/deletions in protein structures, Journal of Molecular Biology, vol.224, issue.2, pp.461-471, 1992.
DOI : 10.1016/0022-2836(92)91008-D

R. Kim and J. Guo, Systematic analysis of short internal indels and their impact on protein folding, BMC Structural Biology, vol.10, issue.1, p.24, 2010.
DOI : 10.1186/1472-6807-10-24

M. Chang and S. Benner, Empirical Analysis of Protein Insertions and Deletions Determining Parameters for the Correct Placement of Gaps in Protein Sequence Alignments, Journal of Molecular Biology, vol.341, issue.2, pp.617-631, 2004.
DOI : 10.1016/j.jmb.2004.05.045

Z. Zhang, J. Huang, Z. Wang, L. Wang, and P. Gao, Impact of Indels on the Flanking Regions in Structural Domains, Molecular Biology and Evolution, vol.28, issue.1, pp.291-301, 2011.
DOI : 10.1093/molbev/msq196

B. Offmann, M. Tyagi, and A. De-brevern, Local Protein Structures, Current Bioinformatics, vol.2, issue.3, pp.165-202, 2007.
DOI : 10.2174/157489307781662105

URL : https://hal.archives-ouvertes.fr/inserm-00175058

A. Bornot and A. De-brevern, Protein beta-turn assignments, Bioinformation, vol.1, issue.5, pp.153-155, 2006.
DOI : 10.6026/97320630001153

URL : https://hal.archives-ouvertes.fr/inserm-00133658

P. Chou and G. Fasman, ??-turns in proteins, Journal of Molecular Biology, vol.115, issue.2, pp.135-175, 1977.
DOI : 10.1016/0022-2836(77)90094-8

P. Lewis, F. Momany, and H. Scheraga, Folding of Polypeptide Chains in Proteins: A Proposed Mechanism for Folding, Proceedings of the National Academy of Sciences, vol.68, issue.9, pp.2293-2297, 1971.
DOI : 10.1073/pnas.68.9.2293

J. Richardson, The Anatomy and Taxonomy of Protein Structure, Adv Protein Chem, vol.34, pp.167-339, 1981.
DOI : 10.1016/S0065-3233(08)60520-3

A. Yang, B. Hitz, and B. Honig, Free Energy Determinants of Secondary Structure Formation: III. ??-Turns and their Role in Protein Folding, Journal of Molecular Biology, vol.259, issue.4, pp.873-882, 1996.
DOI : 10.1006/jmbi.1996.0364

A. Shepherd, D. Gorse, and J. Thornton, Prediction of the location and type of ??-turns in proteins using neural networks, Protein Science, vol.74, issue.6, pp.1045-1055, 1999.
DOI : 10.1110/ps.8.5.1045

P. Kountouris and J. Hirst, Predicting beta-turns and their types using predicted backbone dihedral angles and secondary structures, BMC Bioinformatics, vol.11, issue.1, p.407, 2010.
DOI : 10.1186/1471-2105-11-407

E. Hutchinson and J. Thornton, PROMOTIF-A program to identify and analyze structural motifs in proteins, Protein Science, vol.3, issue.2, pp.212-220, 1996.
DOI : 10.1002/pro.5560050204

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-2637, 1983.
DOI : 10.1002/bip.360221211

A. De-brevern, C. Etchebest, and S. Hazout, Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.271-287, 2000.
DOI : 10.1002/1097-0134(20001115)41:3<271::AID-PROT10>3.0.CO;2-Z

URL : https://hal.archives-ouvertes.fr/inserm-00132821

T. Jones and S. Thirup, Using known substructures in protein model building and crystallography, EMBO J, vol.5, pp.819-822, 1986.

R. Kolodny, P. Koehl, L. Guibas, and M. Levitt, Small Libraries of Protein Fragments Model Native Protein Structures Accurately, Journal of Molecular Biology, vol.323, issue.2, pp.297-307, 2002.
DOI : 10.1016/S0022-2836(02)00942-7

M. Levitt, Accurate modeling of protein conformation by automatic segment matching, Journal of Molecular Biology, vol.226, issue.2, pp.507-533, 1992.
DOI : 10.1016/0022-2836(92)90964-L

C. Micheletti, F. Seno, and A. Maritan, Recurrent oligomers in proteins: An optimal scheme reconciling accurate and concise backbone representations in automated folding and design studies, Proteins: Structure, Function, and Genetics, vol.105, issue.4, pp.662-674, 2000.
DOI : 10.1002/1097-0134(20000901)40:4<662::AID-PROT90>3.0.CO;2-F

M. Rooman, J. Rodriguez, and S. Wodak, Automatic definition of recurrent local structure motifs in proteins, Journal of Molecular Biology, vol.213, issue.2, pp.327-336, 1990.
DOI : 10.1016/S0022-2836(05)80194-9

J. Schuchhardt, G. Schneider, J. Reichelt, D. Schomburg, and P. Wrede, Local structural motifs of protein backbones are classified by self-organizing neural networks, "Protein Engineering, Design and Selection", vol.9, issue.10, pp.833-842, 1996.
DOI : 10.1093/protein/9.10.833

R. Unger, D. Harel, S. Wherland, and J. Sussman, A 3D building blocks approach to analyzing and predicting structure of proteins, Proteins: Structure, Function, and Genetics, vol.5, issue.4, pp.355-373, 1989.
DOI : 10.1002/prot.340050410

O. Sander, I. Sommer, and T. Lengauer, Local protein structure prediction using discriminative models, BMC Bioinformatics, vol.7, issue.1, p.14, 2006.
DOI : 10.1186/1471-2105-7-14

R. Thangudu, P. Sharma, N. Srinivasan, and B. Offmann, Analycys: A database for conservation and conformation of disulphide bonds in homologous protein domains, Proteins: Structure, Function, and Bioinformatics, vol.22, issue.90001, pp.255-261, 2007.
DOI : 10.1002/prot.21318

URL : https://hal.archives-ouvertes.fr/hal-01198478

A. De-brevern, New assessment of a structural alphabet, In Silico Biol, vol.5, pp.283-289, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00132875

A. De-brevern, C. Benros, R. Gautier, H. Valadie, and S. Hazout, Local backbone structure prediction of proteins, In Silico Biol, vol.4, pp.381-386, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00132872

C. Etchebest, C. Benros, S. Hazout, and A. De-brevern, A structural alphabet for local protein structures: Improved prediction methods, Proteins: Structure, Function, and Bioinformatics, vol.20, issue.4, pp.810-827, 2005.
DOI : 10.1002/prot.20458

URL : https://hal.archives-ouvertes.fr/inserm-00143564

O. Zimmermann and U. Hansmann, LOCUSTRA: Accurate Prediction of Local Protein Structure Using a Two-Layer Support Vector Machine Approach, Journal of Chemical Information and Modeling, vol.48, issue.9, pp.1903-1908, 2008.
DOI : 10.1021/ci800178a

Q. Dong, X. Wang, L. Lin, and Y. Wang, Analysis and prediction of protein local structure based on structure alphabets, Proteins: Structure, Function, and Bioinformatics, vol.6, issue.Database issue, pp.163-172, 2008.
DOI : 10.1002/prot.21904

C. Benros, A. De-brevern, and S. Hazout, Analyzing the sequence???structure relationship of a library of local structural prototypes, Journal of Theoretical Biology, vol.256, issue.2, pp.215-226, 2009.
DOI : 10.1016/j.jtbi.2008.08.032

URL : https://hal.archives-ouvertes.fr/inserm-00318954

A. De-brevern, C. Etchebest, C. Benros, and S. Hazout, ???Pinning strategy???: a novel approach for predicting the backbone structure in terms of protein blocks from sequence, Journal of Biosciences, vol.289, issue.1, pp.51-70, 2007.
DOI : 10.1007/s12038-007-0006-3

Q. Li, C. Zhou, and H. Liu, Fragment-based local statistical potentials derived by combining an alphabet of protein local structures with secondary structures and solvent accessibilities, Proteins: Structure, Function, and Bioinformatics, vol.34, issue.Web Server issu, pp.820-836, 2009.
DOI : 10.1002/prot.22191

M. Tyagi, A. Bornot, B. Offmann, and A. De-brevern, Protein short loop prediction in terms of a structural alphabet, Computational Biology and Chemistry, vol.33, issue.4, pp.329-333, 2009.
DOI : 10.1016/j.compbiolchem.2009.06.002

URL : https://hal.archives-ouvertes.fr/inserm-00396485

B. Chen and M. Johnson, Protein local 3D structure prediction by Super Granule Support Vector Machines (Super GSVM), BMC Bioinformatics, vol.10, issue.Suppl 11, p.15, 2009.
DOI : 10.1186/1471-2105-10-S11-S15

M. Dudev and C. Lim, Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites, BMC Bioinformatics, vol.8, issue.1, p.106, 2007.
DOI : 10.1186/1471-2105-8-106

G. Faure, A. Bornot, and A. De-brevern, Analysis of protein contacts into Protein Units, Biochimie, vol.91, issue.7, pp.876-887, 2009.
DOI : 10.1016/j.biochi.2009.04.008

URL : https://hal.archives-ouvertes.fr/inserm-00375095

A. Thomas, S. Deshayes, M. Decaffmeyer, V. Eyck, M. Charloteaux et al., Prediction of peptide structure: How far are we?, Proteins: Structure, Function, and Bioinformatics, vol.98, issue.4, pp.889-897, 2006.
DOI : 10.1002/prot.21151

M. Tyagi, A. De-brevern, N. Srinivasan, and B. Offmann, Protein structure mining using a structural alphabet, Proteins: Structure, Function, and Bioinformatics, vol.5, issue.2, pp.920-937, 2008.
DOI : 10.1002/prot.21776

URL : https://hal.archives-ouvertes.fr/inserm-00176443

Y. Zuo and Q. Li, Using reduced amino acid composition to predict defensin family and subfamily: Integrating similarity measure and structural alphabet, Peptides, vol.30, issue.10, pp.1788-1793, 2009.
DOI : 10.1016/j.peptides.2009.06.032

A. Joseph, G. Agarwal, S. Mahajan, J. Gelly, and L. Swapna, A short survey on protein blocks, Biophysical Reviews, vol.30, issue.3, pp.137-145, 2010.
DOI : 10.1007/s12551-010-0036-1

URL : https://hal.archives-ouvertes.fr/inserm-00512823

A. Joseph, A. Bornot, and A. De-brevern, Local Structure Alphabets, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00557300

C. Wu, Y. Chen, and C. Lim, A structural-alphabet-based strategy for finding structural motifs across protein families, Nucleic Acids Research, vol.38, issue.14, p.150, 2010.
DOI : 10.1093/nar/gkq478

M. Tyagi, P. Sharma, C. Swamy, F. Cadet, and N. Srinivasan, Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet, Nucleic Acids Research, vol.34, issue.Web Server, pp.119-123, 2006.
DOI : 10.1093/nar/gkl199

URL : https://hal.archives-ouvertes.fr/inserm-00133751

M. Tyagi, V. Gowri, N. Srinivasan, A. De-brevern, and B. Offmann, A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications, Proteins: Structure, Function, and Bioinformatics, vol.272, issue.1, pp.32-39, 2006.
DOI : 10.1002/prot.21087

URL : https://hal.archives-ouvertes.fr/inserm-00133760

A. Joseph, N. Srinivasan, and A. De-brevern, Improvement of protein structure comparison using a structural alphabet, Biochimie, vol.93, issue.9, pp.1434-1445, 2011.
DOI : 10.1016/j.biochi.2011.04.010

URL : https://hal.archives-ouvertes.fr/inserm-00646245

A. Murzin, S. Brenner, T. Hubbard, and C. Chothia, SCOP: A structural classification of proteins database for the investigation of sequences and structures, Journal of Molecular Biology, vol.247, issue.4, pp.536-540, 1995.
DOI : 10.1016/S0022-2836(05)80134-2

T. Kohonen, Self-Organizing Maps, 2001.

J. Gelly, A. Joseph, N. Srinivasan, and A. De-brevern, iPBA: a tool for protein structure comparison using sequence alignment strategies, Nucleic Acids Research, vol.39, issue.suppl, pp.18-23, 2011.
DOI : 10.1093/nar/gkr333

URL : https://hal.archives-ouvertes.fr/inserm-00646241

S. Balaji, S. Sujatha, S. Kumar, and N. Srinivasan, PALI--a database of Phylogeny and ALIgnment of homologous protein structures, Nucleic Acids Research, vol.29, issue.1, pp.61-65, 2001.
DOI : 10.1093/nar/29.1.61

V. Gowri, S. Pandit, P. Karthik, N. Srinivasan, and S. Balaji, Integration of related sequences with protein three-dimensional structural families in an updated version of PALI database, Nucleic Acids Research, vol.31, issue.1, pp.486-488, 2003.
DOI : 10.1093/nar/gkg063

S. Sujatha, S. Balaji, and N. Srinivasan, PALI: a database of alignments and phylogeny of homologous protein structures, Bioinformatics, vol.17, issue.4, pp.375-376, 2001.
DOI : 10.1093/bioinformatics/17.4.375

A. Konagurthu, J. Whisstock, P. Stuckey, and A. Lesk, MUSTANG: A multiple structural alignment algorithm, Proteins: Structure, Function, and Bioinformatics, vol.365, issue.3, pp.559-574, 2006.
DOI : 10.1002/prot.20921

M. Johnson and J. Overington, A Structural Basis for Sequence Comparisons, Journal of Molecular Biology, vol.233, issue.4, pp.716-738, 1993.
DOI : 10.1006/jmbi.1993.1548

T. Smith and M. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology, vol.147, issue.1, pp.195-197, 1981.
DOI : 10.1016/0022-2836(81)90087-5

J. Martinez, M. Pisabarro, and L. Serrano, Obligatory steps in protein folding and the conformational diversity of the transition state, Nature Structural & Molecular Biology, vol.5, issue.8, pp.721-729, 1998.
DOI : 10.1038/1418

M. Cubellis, F. Cailliez, and S. Lovell, Secondary structure assignment that accurately reflects physical and evolutionary characteristics, BMC Bioinformatics, vol.6, issue.Suppl 4, p.8, 2005.
DOI : 10.1186/1471-2105-6-S4-S8

URL : http://doi.org/10.1186/1471-2105-6-s4-s8

K. Gunasekaran, L. Gomathi, C. Ramakrishnan, J. Chandrasekhar, and P. Balaram, Conformational interconversions in peptide ??-turns: analysis of turns in proteins and computational estimates of barriers, Journal of Molecular Biology, vol.284, issue.5, pp.1505-1516, 1998.
DOI : 10.1006/jmbi.1998.2154

L. Nicholson, T. Yamazaki, D. Torchia, S. Grzesiek, and A. Bax, Flexibility and function in HIV-1 protease, Nature Structural Biology, vol.113, issue.4, pp.274-280, 1995.
DOI : 10.1107/S0021889891004399

R. Srinivasan and G. Rose, The T-to-R transformation in hemoglobin: a reevaluation., Proceedings of the National Academy of Sciences, vol.91, issue.23, pp.11113-11117, 1994.
DOI : 10.1073/pnas.91.23.11113

S. Hayward, Peptide-plane flipping in proteins, Protein Science, vol.35, issue.11, pp.2219-2227, 2001.
DOI : 10.1110/ps.23101

E. Hutchinson and J. Thornton, A revised set of potentials for ??-turn formation in proteins, Protein Science, vol.3, issue.12, pp.2207-2216, 1994.
DOI : 10.1002/pro.5560031206

L. Holm and C. Sander, Protein Structure Comparison by Alignment of Distance Matrices, Journal of Molecular Biology, vol.233, issue.1, pp.123-138, 1993.
DOI : 10.1006/jmbi.1993.1489

J. Gibrat, T. Madej, and S. Bryant, Surprising similarities in structure comparison, Current Opinion in Structural Biology, vol.6, issue.3, pp.377-385, 1996.
DOI : 10.1016/S0959-440X(96)80058-3

I. Shindyalov and P. Bourne, Protein structure alignment by incremental combinatorial extension (CE) of the optimal path, Protein Engineering Design and Selection, vol.11, issue.9, pp.739-747, 1998.
DOI : 10.1093/protein/11.9.739

A. Guerler and E. Knapp, Novel protein folds and their nonsequential structural analogs, Protein Science, vol.33, issue.8, pp.1374-1382, 2008.
DOI : 10.1110/ps.035469.108

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2492825

Y. Zhang and J. Skolnick, TM-align: a protein structure alignment algorithm based on the TM-score, Nucleic Acids Research, vol.33, issue.7, pp.2302-2309, 2005.
DOI : 10.1093/nar/gki524

Y. Ye and A. Godzik, Flexible structure alignment by chaining aligned fragment pairs allowing twists, Bioinformatics, vol.19, issue.Suppl 2, pp.246-255, 2003.
DOI : 10.1093/bioinformatics/btg1086

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/19/suppl_2/ii246

R. Aurora and G. Rose, Helix capping, Protein Science, vol.31, issue.1, pp.21-38, 1998.
DOI : 10.1002/pro.5560070103

A. Chakrabartty, A. Doig, and R. Baldwin, Helix capping propensities in peptides parallel those in proteins., Proceedings of the National Academy of Sciences, vol.90, issue.23, pp.11332-11336, 1993.
DOI : 10.1073/pnas.90.23.11332

D. Engel and W. Degrado, ??-?? linking motifs and interhelical orientations, Proteins: Structure, Function, and Bioinformatics, vol.32, issue.2, pp.325-337, 2005.
DOI : 10.1002/prot.20522

M. Sagermann, L. Martensson, W. Baase, and B. Matthews, A test of proposed rules for helix capping: Implications for protein design, Protein Science, vol.250, issue.3, pp.516-521, 2002.
DOI : 10.1110/ps.39802

E. Kruus, P. Thumfort, C. Tang, and N. Wingreen, Gibbs sampling and helix-cap motifs, Nucleic Acids Research, vol.33, issue.16, pp.5343-5353, 2005.
DOI : 10.1093/nar/gki842

URL : http://doi.org/10.1093/nar/gki842

H. Fu, G. Grimsley, A. Razvi, J. Scholtz, and C. Pace, Increasing protein stability by improving beta-turns, Proteins: Structure, Function, and Bioinformatics, vol.47, issue.3, pp.491-498, 2009.
DOI : 10.1002/prot.22509

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767464

R. Aurora, T. Creamer, R. Srinivasan, and G. Rose, Local Interactions in Protein Folding: Lessons from the ??-Helix, Journal of Biological Chemistry, vol.272, issue.3, pp.1413-1416, 1997.
DOI : 10.1074/jbc.272.3.1413

E. Lacroix, A. Viguera, and L. Serrano, Elucidating the folding problem of ??-helices: local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters, Journal of Molecular Biology, vol.284, issue.1, pp.173-191, 1998.
DOI : 10.1006/jmbi.1998.2145

G. Rose, Lifting the lid on helix-capping, Nature Chemical Biology, vol.120, issue.3, pp.123-124, 2006.
DOI : 10.1038/nchembio0306-123

S. Altschul, J. Wootton, E. Gertz, R. Agarwala, and A. Morgulis, Protein database searches using compositionally adjusted substitution matrices, FEBS Journal, vol.48, issue.20, pp.5101-5109, 2005.
DOI : 10.1093/nar/29.2.351

K. Brick and E. Pizzi, A novel series of compositionally biased substitution matrices for comparing Plasmodium proteins, BMC Bioinformatics, vol.9, issue.1, p.236, 2008.
DOI : 10.1186/1471-2105-9-236

J. Coronado, O. Attie, S. Epstein, W. Qiu, and P. Lipke, Composition-Modified Matrices Improve Identification of Homologs of Saccharomyces cerevisiae Low-Complexity Glycoproteins, Eukaryotic Cell, vol.5, issue.4, pp.628-637, 2006.
DOI : 10.1128/EC.5.4.628-637.2006

Y. Yu and S. Altschul, The construction of amino acid substitution matrices for the comparison of proteins with non-standard compositions, Bioinformatics, vol.21, issue.7, pp.902-911, 2005.
DOI : 10.1093/bioinformatics/bti070

U. Paila, R. Kondam, and A. Ranjan, Genome bias influences amino acid choices: analysis of amino acid substitution and re-compilation of substitution matrices exclusive to an AT-biased genome, Nucleic Acids Research, vol.36, issue.21, pp.6664-6675, 2008.
DOI : 10.1093/nar/gkn635

K. Ellrott, J. Guo, V. Olman, and Y. Xu, IMPROVEMENT IN PROTEIN SEQUENCE-STRUCTURE ALIGNMENT USING INSERTION/DELETION FREQUENCY ARRAYS, Computational Systems Bioinformatics, pp.335-342, 2007.
DOI : 10.1142/9781860948732_0034