D. Beckett, Regulating transcription regulators via allostery and flexibility, Proc. Natl Acad. Sci. USA, pp.22035-22036, 2009.
DOI : 10.1073/pnas.0912300107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799754

G. G. Hammes, S. J. Benkovic, and S. Hammes-schiffer, Flexibility, Diversity, and Cooperativity: Pillars of Enzyme Catalysis, Biochemistry, vol.50, issue.48, pp.10422-10430, 2011.
DOI : 10.1021/bi201486f

M. A. Lill, Efficient Incorporation of Protein Flexibility and Dynamics into Molecular Docking Simulations, Biochemistry, vol.50, issue.28, pp.6157-6169, 2011.
DOI : 10.1021/bi2004558

J. H. Lin, Accommodating Protein Flexibility for Structure-Based Drug Design, Current Topics in Medicinal Chemistry, vol.11, issue.2, pp.171-178, 2011.
DOI : 10.2174/156802611794863580

E. Lindahl, B. Hess, and D. Van-der-spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis, Journal of Molecular Modeling, vol.7, issue.8, pp.306-317, 2001.
DOI : 10.1007/s008940100045

D. A. Case, T. E. Cheatham, . Iii, T. Darden, H. Gohlke et al., The Amber biomolecular simulation programs, Journal of Computational Chemistry, vol.124, issue.16, 2005.
DOI : 10.1002/jcc.20290

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable molecular dynamics with NAMD, Journal of Computational Chemistry, vol.84, issue.16, pp.1781-1802, 2005.
DOI : 10.1002/jcc.20289

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486339

B. R. Brooks, C. L. Brooks, . Iii, A. D. Mackerell, . Jr et al., CHARMM: The biomolecular simulation program, Journal of Computational Chemistry, vol.103, issue.13, pp.1545-1614, 2009.
DOI : 10.1002/jcc.21287

J. Camps, O. Carrillo, A. Emperador, L. Orellana, A. Hospital et al., FlexServ: an integrated tool for the analysis of protein flexibility, Bioinformatics, vol.25, issue.13, pp.1709-1710, 2009.
DOI : 10.1093/bioinformatics/btp304

K. Suhre and Y. H. Sanejouand, ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement, Nucleic Acids Research, vol.32, issue.Web Server, pp.610-614, 2004.
DOI : 10.1093/nar/gkh368

URL : https://hal.archives-ouvertes.fr/hal-00344557

E. Lindahl, C. Azuara, P. Koehl, and M. Delarue, NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis, Nucleic Acids Research, vol.34, issue.Web Server, pp.52-56, 2006.
DOI : 10.1093/nar/gkl082

K. S. Keating, S. C. Flores, M. B. Gerstein, and L. A. Kuhn, : Hinge prediction by network analysis of individual protein structures, Protein Science, vol.144, issue.2, pp.359-371, 2009.
DOI : 10.1002/pro.38

U. Emekli, D. Schneidman-duhovny, H. J. Wolfson, R. Nussinov, and T. Haliloglu, HingeProt: Automated prediction of hinges in protein structures, Proteins: Structure, Function, and Bioinformatics, vol.34, issue.3/4, pp.1219-1227, 2008.
DOI : 10.1002/prot.21613

D. Seeliger, D. Groot, and B. L. , tCONCOORD-GUI: Visually supported conformational sampling of bioactive molecules, Journal of Computational Chemistry, vol.7, issue.7, pp.1160-1166, 2009.
DOI : 10.1002/jcc.21127

P. Karplus and G. Schulz, Prediction of chain flexibility in proteins, Naturwissenschaften, vol.17, issue.4, pp.212-213
DOI : 10.1007/BF01195768

M. Vihinen, E. Torkkila, and P. Riikonen, Accuracy of protein flexibility predictions, Proteins: Structure, Function, and Genetics, vol.18, issue.2, pp.141-149, 1994.
DOI : 10.1002/prot.340190207

A. Schlessinger, G. Yachdav, and B. Rost, PROFbval: predict flexible and rigid residues in proteins, Bioinformatics, vol.22, issue.7, pp.891-893, 2006.
DOI : 10.1093/bioinformatics/btl032

X. Y. Pan and H. B. Shen, Robust Prediction of B-Factor Profile from Sequence Using Two-Stage SVR Based on Random Forest Feature Selection, Protein & Peptide Letters, vol.16, issue.12, pp.1447-1454, 2009.
DOI : 10.2174/092986609789839250

K. Chen, L. A. Kurgan, and J. Ruan, Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs, BMC Structural Biology, vol.7, issue.1, p.25, 2007.
DOI : 10.1186/1472-6807-7-25

T. Zhang, E. Faraggi, and Y. Zhou, Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction, Proteins: Structure, Function, and Bioinformatics, vol.231, issue.Suppl, pp.3353-3362, 2010.
DOI : 10.1002/prot.22842

O. Trott, K. Siggers, B. Rost, A. G. Palmer, and . Iii, Protein conformational flexibility prediction using machine learning, Journal of Magnetic Resonance, vol.192, issue.1, pp.37-47, 2008.
DOI : 10.1016/j.jmr.2008.01.011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2413295

O. V. Galzitskaya, S. O. Garbuzynskiy, and M. Y. Lobanov, FoldUnfold: web server for the prediction of disordered regions in protein chain, Bioinformatics, vol.22, issue.23, pp.2948-2949, 2006.
DOI : 10.1093/bioinformatics/btl504

T. B. Mamonova, A. V. Glyakina, M. G. Kurnikova, and O. V. Galzitskaya, FLEXIBILITY AND MOBILITY IN MESOPHILIC AND THERMOPHILIC HOMOLOGOUS PROTEINS FROM MOLECULAR DYNAMICS AND FOLDUNFOLD METHOD, Journal of Bioinformatics and Computational Biology, vol.08, issue.03, pp.377-394, 2010.
DOI : 10.1142/S0219720010004690

S. Hirose, K. Yokota, Y. Kuroda, H. Wako, S. Endo et al., Prediction of protein motions from amino acid sequence and its application to protein-protein interaction, BMC Structural Biology, vol.10, issue.1, p.20, 2010.
DOI : 10.1186/1472-6807-10-20

H. Hwang, T. Vreven, T. W. Whitfield, K. Wiehe, and Z. Weng, A machine learning approach for the prediction of protein surface loop flexibility, Proteins: Structure, Function, and Bioinformatics, vol.34, issue.1, pp.2467-2474, 2011.
DOI : 10.1002/prot.23070

I. B. Kuznetsov, Ordered conformational change in the protein backbone: Prediction of conformationally variable positions from sequence and low-resolution structural data, Proteins: Structure, Function, and Bioinformatics, vol.23, issue.1, pp.74-87, 2008.
DOI : 10.1002/prot.21899

I. B. Kuznetsov and M. Mcduffie, FlexPred: a web-server for predicting residue positions involved in conformational switches in proteins, Bioinformation, vol.3, issue.3, pp.134-136, 2008.
DOI : 10.6026/97320630003134

C. Benros, A. G. De-brevern, C. Etchebest, and S. Hazout, Assessing a novel approach for predicting local 3D protein structures from sequence, Proteins: Structure, Function, and Bioinformatics, vol.30, issue.23, pp.865-880, 2006.
DOI : 10.1002/prot.20815

URL : https://hal.archives-ouvertes.fr/inserm-00133180

C. Benros, A. G. De-brevern, and S. Hazout, Analyzing the sequence???structure relationship of a library of local structural prototypes, Journal of Theoretical Biology, vol.256, issue.2, pp.215-226, 2009.
DOI : 10.1016/j.jtbi.2008.08.032

URL : https://hal.archives-ouvertes.fr/inserm-00318954

A. G. De-brevern and S. Hazout, 'Hybrid Protein Model' for optimally defining 3D protein structure fragments, Bioinformatics, vol.19, issue.3, pp.345-353, 2003.
DOI : 10.1093/bioinformatics/btf859

URL : https://hal.archives-ouvertes.fr/inserm-00133632

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.59-69, 1982.
DOI : 10.1007/BF00337288

T. Kohonen, Self-Organizing Maps, 3rd edn, 2001.

B. Offmann, M. Tyagi, and A. G. De-brevern, Local Protein Structures, Current Bioinformatics, vol.2, issue.3, pp.165-202, 2007.
DOI : 10.2174/157489307781662105

URL : https://hal.archives-ouvertes.fr/inserm-00175058

A. P. Joseph, G. Agarwal, S. Mahajan, J. C. Gelly, L. S. Swapna et al., A short survey on protein blocks, Biophysical Reviews, vol.30, issue.3, pp.137-147, 2010.
DOI : 10.1007/s12551-010-0036-1

URL : https://hal.archives-ouvertes.fr/inserm-00512823

A. G. De-brevern, C. Etchebest, and S. Hazout, Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.271-287, 2000.
DOI : 10.1002/1097-0134(20001115)41:3<271::AID-PROT10>3.0.CO;2-Z

URL : https://hal.archives-ouvertes.fr/inserm-00132821

A. Bornot, C. Etchebest, and A. G. De-brevern, A new prediction strategy for long local protein structures using an original description, Proteins: Structure, Function, and Bioinformatics, vol.19, issue.1/2, pp.570-587, 2009.
DOI : 10.1002/prot.22370

URL : https://hal.archives-ouvertes.fr/inserm-00348740

T. Noguchi and Y. Akiyama, PDB-REPRDB: a database of representative protein chains from the Protein Data Bank (PDB) in 2003, Nucleic Acids Research, vol.31, issue.1, pp.492-493, 2003.
DOI : 10.1093/nar/gkg022

T. Noguchi, H. Matsuda, and Y. Akiyama, PDB-REPRDB: a database of representative protein chains from the Protein Data Bank (PDB), Nucleic Acids Research, vol.29, issue.1, pp.219-220, 2001.
DOI : 10.1093/nar/29.1.219

A. Bornot, C. Etchebest, and A. G. De-brevern, Predicting protein flexibility through the prediction of local structures, Proteins: Structure, Function, and Bioinformatics, vol.48, issue.Suppl 7, pp.839-852, 2011.
DOI : 10.1002/prot.22922

URL : https://hal.archives-ouvertes.fr/inserm-00568171

D. K. Smith, P. Radivojac, Z. Obradovic, A. K. Dunker, and G. Zhu, Improved amino acid flexibility parameters, Protein Science, vol.293, issue.5, pp.1060-1072, 2003.
DOI : 10.1110/ps.0236203

Z. Obradovic, K. Peng, S. Vucetic, P. Radivojac, and A. K. Dunker, Exploiting heterogeneous sequence properties improves prediction of protein disorder, Proteins: Structure, Function, and Bioinformatics, vol.341, issue.S7, pp.61-176, 2005.
DOI : 10.1002/prot.20735

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

U. Consortium, Ongoing and future developments at the Universal Protein Resource, Nucleic Acids Research, vol.39, issue.Database, pp.214-219, 2011.
DOI : 10.1093/nar/gkq1020

R. Ihaka and R. Gentleman, R: a language for data analysis and graphics, J. Comput. Graph. Stat, vol.5, pp.299-314, 1996.

R. Development and C. Team, R: a language and environment for statistical computing, 2011.