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Abstract

Background: Carbon monoxide (CO) synthesized by heme oxygenase 1 (HO-1) exerts antinociceptive effects during
inflammation but its role during neuropathic pain remains unknown. Our objective is to investigate the exact contribution
of CO derived from HO-1 in the modulation of neuropathic pain and the mechanisms implicated.

Methodology/Principal Findings: We evaluated the antiallodynic and antihyperalgesic effects of CO following sciatic nerve
injury in wild type (WT) or inducible nitric oxide synthase knockout (NOS2-KO) mice using two carbon monoxide-releasing
molecules (CORM-2 and CORM-3) and an HO-1 inducer (cobalt protoporphyrin IX, CoPP) daily administered from days 10 to
20 after injury. The effects of CORM-2 and CoPP on the expression of HO-1, heme oxygenase 2 (HO-2), neuronal nitric oxide
synthase (NOS1) and NOS2 as well as a microglial marker (CD11b/c) were also assessed at day 20 after surgery in WT and
NOS2-KO mice. In WT mice, the main neuropathic pain symptoms induced by nerve injury were significantly reduced in
a time-dependent manner by treatment with CO-RMs or CoPP. Both CORM-2 and CoPP treatments increased HO-1
expression in WT mice, but only CoPP stimulated HO-1 in NOS2-KO animals. The increased expression of HO-2 induced by
nerve injury in WT, but not in NOS2-KO mice, remains unaltered by CORM-2 or CoPP treatments. In contrast, the over-
expression of CD11b/c, NOS1 and NOS2 induced by nerve injury in WT, but not in NOS2-KO mice, were significantly
decreased by both CORM-2 and CoPP treatments. These data indicate that CO alleviates neuropathic pain through the
reduction of spinal microglial activation and NOS1/NOS2 over-expression.

Conclusions/Significance: This study reports that an interaction between the CO and nitric oxide (NO) systems is taking
place following sciatic nerve injury and reveals that increasing the exogenous (CO-RMs) or endogenous (CoPP) production
of CO may represent a novel strategy for the treatment of neuropathic pain.

Citation: Hervera A, Leánez S, Negrete R, Motterlini R, Pol O (2012) Carbon Monoxide Reduces Neuropathic Pain and Spinal Microglial Activation by Inhibiting
Nitric Oxide Synthesis in Mice. PLoS ONE 7(8): e43693. doi:10.1371/journal.pone.0043693

Editor: Allan Siegel, University of Medicine & Dentistry of NJ - New Jersey Medical School, United States of America

Received May 3, 2012; Accepted July 23, 2012; Published August 22, 2012

Copyright: � 2012 Hervera et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
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Introduction

Neuropathic pain is a clinical manifestation characterized by the

presence of allodynia and hyperalgesia and it is difficult to treat

with the most potent analgesic compounds. The mechanisms

contributing to this syndrome involve local inflammatory re-

sponses, changes in the plasticity of neuronal nociceptive pathways

and activation of spinal microglia [1].

Nitric oxide (NO) synthesized either by neuronal (NOS1) or

inducible (NOS2) nitric oxide synthase mediates numerous

neuropathic pain symptoms via cGMP-PKG pathway activation

[2–4]. Accordingly, the expression of both enzymes is up-regulated

in the spinal cord and dorsal root ganglia of animals with

neuropathic pain [5–7]. The hypersensitivity effects induced by

nerve injury are significantly diminished or absent in NOS1

(NOS1-KO) and NOS2 (NOS2-KO) knockout animals [6,8] or

reversed by the administration of selective NOS, guanylate cyclase

or PKG inhibitors [4,5,9]. Moreover, the intraperitoneal admin-

istration of a NO donor potentiates the mechanical and thermal

hypersensitivity induced by neuropathic pain [10].

Carbon monoxide (CO) synthesized by heme oxygenases-1

(HO-1) or 2 (HO-2), is another gaseous neurotransmitter

implicated in the modulation of nociceptive pathways. However,

while HO-2 exerts a pronociceptive effect during neuropathic pain

[11], HO-1 plays an important role in the modulation of acute

inflammatory pain [12,13]. Consequently, the expression of HO-2

increases after nerve injury and the mechanical and thermal

hypersensitivity to pain induced by nerve injury has been shown to

be markedly decreased in HO-2-KO mice [14,15]. In contrast, the

over-expression of HO-1 is associated with potent anti-inflamma-

tory and antinociceptive effects during inflammatory pain [11,12].

However, the exact contribution of CO synthesized by HO-1 in

the modulation of the main symptoms of neuropathic pain

induced by sciatic nerve injury remains unknown.
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It is interesting to note that, similarly to NO, CO also activates

the cGMP-PKG pathway. As a result, a cross-talk has been

reported between these two gases in several in vitro and in vivo

models. For instance, NOS2-derived NO as well as NO donors

contribute to induction of HO-1 by cGMP-PKG-dependent

pathway activation [16], indicating that NO is an important

regulator of CO produced by HO-1 [17–19]. Studies in vivo also

demonstrated that while the antihyperalgesic effects induced by

CO depend on the integrity of the NOS pathways, the

antinociceptive responses produced by NO are independent of

CO [13]. Nevertheless, the possible interaction between the NO

and CO systems during neuropathic pain has not been in-

vestigated.

Carbon monoxide-releasing molecules (CO-RMs) are a new

class of chemical agents able to reproduce numerous biological

effects of HO-1-derived CO [20–23]. Several authors has shown

that CO-RMs and HO-1 induction using cobalt protoporphyrin

IX (CoPP) exert potent anti-inflammatory effects in vivo [11,24].

However, the possible antiallodynic and antihyperalgesic effects

produced by these compounds during neuropathic pain have not

been evaluated.

It is well known that microglia modulates several neuronal

changes occurring during the development and maintenance of

numerous chronic states, including neuropathic pain [1,25].

Interestingly, the administration of inhibitors of microglial cells

activation significantly reduces the behavioral symptoms of

neuropathic pain [25]. Thus, we investigated the potential role

of CO and HO-1-derived CO in the modulation of neuropathic

pain as well as the possible mechanisms involved in this action.

Specifically, in sciatic nerve-injured WT and NOS2-KO mice we

evaluated: 1) the mechanical antiallodynic, thermal antihyper-

algesic and thermal antiallodynic effects produced by the

administration of two CO-RMs, tricarbonyldichlororuthrnium(II)

dimer (CORM-2) and tricarbonylchloro (glycinate)ruthenium (II)

(CORM-3) as well as a classical HO-1 inducer (CoPP) and 2) the

effect of these treatments on the expression of HO and NOS

isoforms as well as CD11b/c, a marker of microglia activation, in

the dorsal root ganglia and spinal cord of these animals.

Results

Effect of CORM-2, CORM-3 and CoPP Treatments in WT
and NOS2-KO Sciatic Nerve-injured Mice

Animals were intraperitoneally administered twice daily with

CORM-2 (5 mg/kg), CORM-3 (5 mg/kg), CoPP (2.5 mg/kg) or

vehicle for a period of 11 days after surgery. On days 1, 5 and 11

of treatment mice were sequentially assessed for mechanical

allodynia, thermal hyperalgesia and thermal allodynia.

Sciatic nerve injury led to a significant decrease of the threshold

for evoking hind paw withdrawal to a mechanical stimulus in WT

animals (Fig. 1A) which response was abolished in NOS2-KO

mice (Fig. 1D). That is, mechanical allodynia was developed in

vehicle treated WT mice exposed to sciatic nerve injury from days

10 to 20 after surgery when compared to sham-operated mice

(p,0.001; one way ANOVA). This mechanical allodynia was

significantly attenuated in nerve-injured WT mice repeatedly

treated with CORM-2, CORM-3 or CoPP (Fig. 1A). The three-

way ANOVA revealed a significant effect of the surgery, treatment

and time (p,0.001) and a significant interaction between

treatment and time (p,0.001), surgery and treatment (p,0.001),

surgery and time (p,0.001) and between surgery, treatment and

time (p,0.001). Indeed, mechanical allodynia was equally reduced

on day 1 in CORM-2 and CORM-3, but not in CoPP, treated

mice (p,0.001; one way ANOVA vs. vehicle nerve-injured treated

mice), although the antiallodynic efficacy of all of them increased

progressively on days 5 and 11 of treatment (p,0.001; one way

ANOVA vs. vehicle nerve-injured treated mice). In sham-operated

WT mice CORM-2, CORM-3 and CoPP treatments did not

produce any effect as compared to sham-operated vehicle treated

WT mice for the whole duration of the experiment.

The effects of CORM-2, CORM-3 or CoPP treatments in

NOS2-KO mice exposed to sciatic nerve injury have been also

evaluated. The three-way ANOVA did not reveal any significant

effect of the surgery, treatment and time and non significant

interaction between theme was demonstrated. Mechanical allo-

dynia was not developed in NOS2-KO mice and the systemic

administration of CORM-2, CORM-3 or CoPP did not alter the

lack of mechanical allodynia observed in these nerve-injured

animals (Fig. 1D). Sham operation did not produce any effect

neither in CORM-2, CORM-3 or CoPP nor in vehicle treated

NOS2-KO mice for the whole duration of the experiment.

Sciatic nerve injury led to a significant decrease of the threshold

for evoking paw withdrawal to a thermal stimulus in WT mice

from days 10 to 20 after surgery as compared to sham-operated

mice (p,0.001; one way ANOVA). This thermal hyperalgesia was

significantly attenuated in nerve-injured WT mice repeatedly

treated with CORM-2, CORM-3 or CoPP (Fig. 1B). The three-

way ANOVA revealed a significant effect of the surgery, treatment

and time (p,0.001) and a significant interaction between

treatment and time (p,0.001), surgery and treatment (p,0.001),

surgery and time (p,0.001) as well as between surgery, treatment

and time (p,0.001). Indeed, thermal hyperalgesia was completely

blocked on day 1 in CORM-2 and CORM-3 treated WT mice

(p,0.001; one way ANOVA vs. vehicle nerve-injured treated

mice) and this level of efficacy was similarly maintained for both

compounds on days 5 and 11 of treatment (p,0.001; one way

ANOVA vs. vehicle nerve-injured treated mice). In contrast,

thermal hyperalgesia was only significantly reduced by CoPP on

day 5 (p,0.001; one way ANOVA vs. vehicle nerve-injured

treated mice) and its antihyperalgesic efficacy increased pro-

gressively on day 11 of treatment (p,0.001; one way ANOVA vs.

vehicle nerve-injured treated mice). In sham-operated WT mice

CORM-2, CORM-3 and CoPP treatments did not produce any

effect as compared to sham-operated vehicle treated WT mice for

the whole duration of the experiment.

The effects of CORM-2, CORM-3 or CoPP treatments in

NOS2-KO mice after sciatic nerve injury have been also

evaluated. The three-way ANOVA did not reveal any significant

effect of the surgery, treatment and time and non significant

interaction between theme was demonstrated. Thermal hyper-

algesia was not developed in NOS2-KO mice and the systemic

administration of CO-RM’s or CoPP did not alter the absence of

thermal hypersensitivy observed in these nerve-injured NOS2-KO

animals (Fig. 1E). Sham operation did not produce any effect

neither in CORM-2, CORM-3 or CoPP nor in vehicle treated

NOS2-KO mice for the whole duration of the experiment.

Sciatic nerve injury increased the number of ipsilateral paw lifts

during cold thermal stimulation in WT mice from days 10 to 20

after surgery as compared to sham-operated WT mice (p,0.001;

one way ANOVA). This thermal allodynia was significantly

attenuated in nerve-injured WT mice repeatedly treated with

CORM-2, CORM-3 or CoPP (Fig. 1C). The three-way ANOVA

revealed a significant effect of the surgery (p,0.001), treatment

(p,0.001) and time (p,0.010) as well as a significant interaction

between treatment and time (p,0.013), surgery and treatment

(p,0.022), surgery and time (p,0.001) and the triple interaction

between surgery, treatment and time (p,0.014). Indeed, although

thermal allodynia was similarly reduced on days 1 and 5 in
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CORM-2 and CORM-3, but not in CoPP, treated WT mice

(p,0.001; one way ANOVA vs. vehicle nerve-injured treated

mice) the antiallodynic efficacy of all treatments increased

progressively on day 11, where thermal allodynia was completely

blocked by CORM-2, CORM-3 or CoPP treatments (p,0.001;

one way ANOVA vs. vehicle nerve-injured treated mice). In sham-

operated WT mice CORM-2, CORM-3 or CoPP treatments did

not produce any effect as compared to sham-operated vehicle

treated WT animals for the whole duration of the experiment.

The effects of CORM-2, CORM-3 or CoPP treatments in

NOS2-KO mice after sciatic nerve injury have been also

evaluated. The three-way ANOVA did not reveal any significant

effect of the surgery, treatment and time and non significant

interaction between theme was demonstrated. Thermal allodynia

was not developed in NOS2-KO mice and the systemic

administration of CORM-2, CORM-3 or CoPP did not alter

the absence of thermal allodynia observed in these NOS2-KO

nerve-injured animals (Fig. 1F). Sham operation did not produce

any effect neither in CORM-2, CORM-3 or CoPP nor in vehicle

treated NOS2-KO mice for the whole duration of the experiment.

In all experiments, CORM-2, CORM-3 or CoPP treatments

did not have any significant effect in the contralateral paw of

sciatic nerve-injured or sham-operated WT or NOS2-KO animals

(data not shown).

Effect of CORM-2 and CoPP on HO-1 and HO-2 Protein
Expression in the Dorsal Root Ganglia and Spinal Cord
from WT and NOS2-KO Sciatic Nerve-injured Mice

The protein levels of HO-1 in the dorsal root ganglia (A) and

spinal cord (B) from sciatic nerve-injured WT or NOS2-KO mice

treated with vehicle, CORM-2 or CoPP are shown in Fig. 2. For

each tissue, the expression of HO-1 from sham-operated WT or

NOS2-KO vehicle treated mice has been also shown. In both

tissues, non-significant differences were found between genotypes

as compared to the expression of HO-1 among them in vehicle

sham-operated or vehicle sciatic nerve-injured mice treated with

vehicle. However, while in sciatic nerve-injured WT mice the

dorsal root ganglia and spinal cord expression of HO-1 was

significantly increased by CORM-2 or CoPP treatments

(p,0.001; one-way ANOVA vs. sham-operated and nerve-injured

vehicle treated WT mice), in NOS2-KO mice the expression of

this enzyme was only enhanced by CoPP (p,0.001; one-way

ANOVA vs. to the other groups). In addition, the enhanced

Figure 1. Effect of CORM-2, CORM-3 and CoPP on sciatic nerve-injured WT and NOS2-KO mice. The development of the mechanical
allodynia (A and D), thermal hyperalgesia (B and E) and thermal allodynia (C and F) in sciatic nerve-injured (continuous lines) and sham-operated
(discontinuous lines) WT or NOS2-KO mice treated during 11 consecutive days with vehicle, CORM-2, CORM-3 or CoPP at 10, 14 and 20 days after
surgery is shown. For each genotype, test, day and drug evaluated, *indicates significant differences when compared vs. vehicle sham-operated
group (p,0.001, one-way ANOVA followed by the Student Newman Keuls test) and +indicates significant differences when compared vs. vehicle
nerve-injured group (p,0.001, one-way ANOVA followed by the Student Newman Keuls test). Results are shown as mean values6 SEM; n = 7 animals
per experimental group.
doi:10.1371/journal.pone.0043693.g001

Figure 2. Effect of CORM-2 and CoPP on HO-1 protein expression from sciatic nerve-injured WT and NOS2-KO mice. The protein
expression in the ipsilateral site of the dorsal root ganglia (A) and the lumbar section of the spinal cord (B) from sciatic nerve-injured (CCI) WT and
NOS2-KO mice treated with vehicle, CORM-2 or CoPP at 20 days after surgery is represented. The expression of HO-1 in the dorsal root ganglia and
spinal cord from sham-operated WT and NOS2-KO mice treated with vehicle has been also represented as controls (sham-vehicle). In both figures and
genotypes, *indicates significant differences when compared vs. their respective sham-operated vehicle treated mice (*p,0.05, one-way ANOVA
followed by the Student Newman Keuls test), +indicates significant differences when compared vs. their respective sciatic nerve-injured vehicle
treated mice (+p,0.05, one-way ANOVA followed by the Student Newman Keuls test), #indicates significant differences when compared vs. their
respective sciatic nerve-injured CORM-2 treated mice (#p,0.05, one-way ANOVA followed by the Student Newman Keuls test). Representative
examples of western blots for HO-1 protein (32 kDa) in which b-actin (45 kDa) was used as a loading control are also shown. Data are expressed as
mean values 6 SEM; n = 5 samples per group.
doi:10.1371/journal.pone.0043693.g002
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expression of HO-1 induced by CoPP in the dorsal root ganglia

and spinal cord of sciatic nerve-injured WT mice is higher than

those produced by CORM-2 treatment (p,0.001; one-way

ANOVA followed by Student Newman Keuls test).

The protein levels of HO-2 in the dorsal root ganglia (A) and

spinal cord (B) from sciatic nerve-injured WT or NOS2-KO mice

treated with vehicle, CORM-2 or CoPP are shown in Fig. 3. The

expression of HO-2 from sham-operated WT or NOS2-KO mice

treated with vehicle is also shown. Sciatic nerve injury significantly

increased the dorsal root ganglia and spinal cord levels of HO-2 in

vehicle, CORM-2 and CoPP treated WT mice (p,0.001; one-way

ANOVA vs. sham-operated vehicle treated WT mice). In contrast,

the dorsal root ganglia and spinal cord expression of HO-2 was

not altered in vehicle, CORM-2 and CoPP treated nerve-injured

NOS2-KO mice.

Effect of CORM-2 and CoPP on CD11b/c Protein
Expression in the Spinal Cord from WT and NOS2-KO
Sciatic Nerve-injured Mice

We next investigated whether the increased spinal cord

expression of CD11b/c induced by nerve injury was altered by

CORM-2 and CoPP treatments. The expression of CD11b/c

from sham-operated WT or NOS2-KO vehicle treated mice is

also evaluated (Fig. 4). Our results showed that the repeated

treatment with CORM-2 and CoPP inhibited the increased

expression of CD11b/c induced by sciatic nerve injury in WT

mice (p,0.001; one-way ANOVA vs. sham-operated WT mice).

Interestingly, sciatic nerve injury did not increase the protein levels

of CD11b/c in NOS2-KO mice, which expression remains

unaltered after CORM-2 or CoPP treatment.

Effect of CORM-2 and CoPP on NOS1 and NOS2 Protein
Expression in the Spinal Cord from WT and NOS2-KO
Sciatic Nerve-injured Mice

The protein levels of NOS1 (A) and NOS2 (B) in the spinal cord

from sciatic nerve-injured WT or NOS2-KO mice treated with

vehicle, CORM-2 or CoPP are shown in Fig. 5. The expression of

NOS1 and NOS2 from sham-operated WT or NOS2-KO mice

treated with vehicle has been also shown. Sciatic nerve injury

significantly increased the protein levels of NOS1 and NOS2 in

the spinal cord of WT mice (p,0.001; one-way ANOVA vs.

sham-operated vehicle treated WT mice), which levels were

significantly reduced by the repeated intraperitoneal administra-

tion of CORM-2 and CoPP. In contrast, sciatic nerve injury did

not alter the spinal cord expression of NOS1 as well as of NOS2 in

vehicle, CORM-2 or CoPP treated NOS2-KO animals, which

protein levels were similar to those obtained in sham-operated

NOS2-KO mice.

A summary of the results from the protein expression studies

obtained in the ipsilateral site of the dorsal root ganglia and/or the

lumbar section of the spinal cord from sciatic nerve-injured WT

and NOS2-KO mice treated with vehicle, CORM-2 or CoPP is

shown in Table 1.

Discussion

In the present study we demonstrated, for first time, that the

repeated intraperitoneal administration of CORM-2, CORM-3 or

CoPP significantly reduced the mechanical allodynia, thermal

hyperalgesia and thermal allodynia induced by the chronic

constriction of sciatic nerve in WT mice. Our results also indicate

that these effects are mainly produced by CO synthesized by HO-

Figure 3. Effect of CORM-2 and CoPP on HO-2 protein expression from sciatic nerve-injured WT and NOS2-KO mice. The protein
expression in the ipsilateral site of the dorsal root ganglia (A) and the lumbar section of the spinal cord (B) from sciatic nerve-injured (CCI) WT and
NOS2-KO mice treated with vehicle, CORM-2 or CoPP at 20 days after surgery is represented. The expression of HO-2 in the dorsal root ganglia and
spinal cord from sham-operated WT and NOS2-KO mice treated with vehicle has been also represented as controls (sham-vehicle). In both figures and
genotypes, *indicates significant differences when compared vs. their respective sham-operated vehicle treated mice (*p,0.05, one-way ANOVA
followed by the Student Newman Keuls test). Representative examples of western blots for HO-2 protein (37 kDa) in which b-actin (45 kDa) was used
as a loading control are also shown. Data are expressed as mean values 6 SEM; n = 5 samples per group.
doi:10.1371/journal.pone.0043693.g003
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1, through reduction of spinal microglial activation and NOS1/

NOS2 over-expression.

It is well known that CO has potent antinociceptive and anti-

inflammatory effects during inflammatory diseases [12,24,26]. In

accordance, the results presented here further demonstrate that

the intraperitoneal administration of CO by using CORM-2 and

CORM-3 as well as the induction of endogenous CO by injection

of the HO-1 inducer CoPP during 11 consecutive days signifi-

cantly reduced the mechanical and thermal hypersensitivity

induced by sciatic nerve injury in WT mice. Our results also

revealed that, although at 11 days of treatment all compounds

inhibited neuropathic pain with similar effectiveness, the anti-

allodynic and antihyperalgesic effects produced by CORM-2 and

CORM-3 on days 1 and 5 of treatment were significantly higher

than those produced by CoPP. These results could be related to

the more direct release of CO by CO-RMs, in contrast to the HO-

1 over-expression required by CoPP to synthesize CO. Our data

also indicate that CO-RMs are more effective on the inhibition of

thermal hyperalgesia than of mechanical and thermal allodynia

induced by sciatic nerve injury.

In accordance to our previous studies [6], our findings showed

that the principal manifestations of neuropathic pain induced by

sciatic nerve injury were completely abolished in NOS2-KO mice.

In addition, the lack of thermal and mechanical hypersensitivity

observed in sciatic nerve-injured NOS2-KO mice remained

unchanged after CO-RMs or CoPP treatments, similarly to that

occurs in sham-operated WT or NOS2-KO treated animals.

As previously shown in other inflammatory models [27,28], our

results also demonstrated that the expression of HO-1 was

significantly increased in the dorsal root ganglia and spinal cord

of sciatic nerve-injured WT mice treated with CORM-2 or CoPP.

As expected, the enhanced expression of HO-1 induced by CoPP

(a HO-1 expression inducer) was higher than those produced by

CORM-2 treatment. Interestingly, in sciatic nerve-injured NOS2-

KO mice the expression of HO-1 was only increased after CoPP

treatment. These results indicate that CORM-2 requires the

presence of NOS2 to enhance the expression of HO-1, revealing

that NO plays a key role in the positive feedback regulation of

HO-1 over-expression during neuropathic pain. In accordance to

our results other studies have been also demonstrated that the

antihyperalgesic effects induced by CO in acute pain depend on

the integrity of NO pathway [13].

In contrast to HO-1-derived CO, CO synthesized by HO-2

contributes to the progression of neuropathic pain. Thus, the lack

of HO-2 appears to prevent the mechanical and thermal

hypersensitivity to pain induced by nerve injury and the expression

of this enzyme increases during neuropathic pain [14,15,29]. Our

data support these findings and also demonstrate that the

Figure 4. Effect of CORM-2 and CoPP on CD11b/c protein expression from sciatic nerve-injured WT and NOS2-KO mice. The protein
expression in the ipsilateral site of the lumbar section of the spinal cord from sciatic nerve-injured (CCI) WT and NOS2-KO mice treated with vehicle,
CORM-2 or CoPP at 20 days after surgery is represented. The expression of CD11b/c in the spinal cord from sham-operated WT and NOS2-KO mice
treated with vehicle has been also represented as controls (sham-vehicle). In this figure *indicates significant differences when compared vs. sham-
operated vehicle treated WT mice (*p,0.05, one-way ANOVA followed by the Student Newman Keuls test). Representative examples of western blots
for CD11b/c protein (97 kDa) in which b-actin (45 kDa) was used as a loading control are also shown. Data are expressed as mean values6 SEM; n = 5
samples per group.
doi:10.1371/journal.pone.0043693.g004
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increased expression of this isoenzyme in the dorsal root ganglia

and spinal cord of sciatic nerve-injured WT mice is not altered by

CORM-2 or CoPP treatments, indicating that the antiallodynic

and antihyperalgesic effects produced by the chronic administra-

tion of both compounds are not produced by the inhibition of the

enhanced peripheral or central expression of HO-2 induced by

nerve injury. In addition, the fact that the expression of HO-2 did

not increase in the spinal cord and dorsal root ganglia of sciatic

nerve-injured NOS2-KO mice, provide evidence that the up-

regulation of HO-2 induced by nerve injury required the presence

of NOS2, further supporting the relevant interactions between

NOS/NO and HO/CO pathways previously demonstrated in

other in vivo and in vitro models [11].

The molecular mechanism implicated in the inhibitory effects

produced by CO after neuropathic pain is currently unknown. It

has been reported that nerve injury promotes the activation of

spinal glial cells, and that this activated glia may contribute to the

initiation and maintenance of neuropathic pain [30]. Indeed, the

administration of inhibitors of microglial cells activation signifi-

cantly reduced the behavioral symptoms of neuropathic pain [25].

Several studies also demonstrated the presence of HO-1 in glial

cells [31], but the possible effect of CO liberated by CORM-2 or

synthesized by HO-1 on the modulation of activated microglia

induced by nerve injury is not yet well established. Thus, in order

to evaluate if this gas could reduce microglial activation and to

establish the role played by NO, synthesized by NOS1 and NOS2,

in this process we evaluated the expression of CD11b/c (as

a measure of microglial activation), as well as of NOS1 and NOS2

in the spinal cord of sciatic nerve-injured WT mice treated with

CORM-2 or CoPP. It is interesting to note that CORM-2 and

CoPP treatments reduced the spinal microglial activation as well

as the enhanced NOS1 and NOS2 expression induced by sciatic

nerve injury in WT mice. Thus, the alleviation of the behavioral

manifestations of neuropathic pain in CO-RMs or CoPP-treated

WT animals could be due to the inhibition of inflammatory

responses that are linked to the microglia activation in the spinal

cord. In contrast to WT mice, the expression of CD11b/c and

NOS1 remains unaltered after nerve injury in NOS2-KO mice

and neither CORM-2 nor CoPP treatment had any effect in these

animals. These results support the hypothesis that the activation of

NOS/NO pathway promotes the activation of microglia and

Figure 5. Effect of CORM-2 and CoPP on NOS1 and NOS2 protein expression from sciatic nerve-injured WT and NOS2-KO mice. The
protein expression in the ipsilateral site of the lumbar section of the spinal cord of NOS1 (A) and NOS2 (B) from sciatic nerve-injured (CCI) WT and
NOS2-KO mice treated with vehicle, CORM-2 or CoPP at 20 days after surgery is represented. The expression of NOS1 and NOS2 in the spinal cord
from sham-operated WT and NOS2-KO mice treated with vehicle has been also represented as controls (sham-vehicle). In both figures and genotypes,
*indicates significant differences when compared vs. their respective sham-operated vehicle treated mice (*p,0.05, one-way ANOVA followed by the
Student Newman Keuls test). Representative examples of western blot for NOS1 (155 kDa) and NOS2 (130 kDa) proteins in which b-actin (45 kDa)
was used as a loading control are also shown. Data are expressed as mean values 6 SEM; n = 5 samples per group.
doi:10.1371/journal.pone.0043693.g005

Table 1. A summary of the results from protein expression
studies obtained in the ipsilateral site of the dorsal root
ganglia (DRG) and/or the lumbar section of the spinal cord
(SC) from sciatic nerve-injured (CCI) WT and NOS2-KO mice
treated with vehicle, CORM-2 or CoPP is shown.

WT NOS2-KO

CCI CCI CCI CCI CCI CCI

Protein Tissue Vehicle CORM-2 CoPP vehicle CORM-2 CoPP

HO-1 DRG R q qq R R qq

SC R q qq R R qq

HO-2 DRG q q q R R R

SC q q q R R R

CD11b/c SC q R R R R R

NOS1 SC q R R R R R

NOS2 SC q R R R R R

The arrows indicate: R unchanged, q increased and qq more increased
expression as compared to the expression obtained in their corresponding
sham-operated animals treated with vehicle.
doi:10.1371/journal.pone.0043693.t001
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contributes to the behavioral pain responses evoked by nerve

injury, as previously demonstrated by the lack or reduced

mechanical and thermal hypersensitivity induced by nerve injury

in NOS2-KO mice [6,8].

Recent studies indicate that CORM-2, but not CORM-3, is

also an antagonist of P2X4 receptors [32] and it is well known that

the up-regulation of these receptors in microglia is an important

process in producing neuropathic pain [33]. However, the similar

behavioral inhibitory effects produced by CORM-2 and CORM-3

in the present study indicate that P2X4 receptors are not the main

molecular targets for the antinociceptive effects produced by

CORM-2 under neuropathic pain conditions. The modulation of

neuropathic pain by the HO-1/CO pathway after sciatic nerve

injury could be explained by the inhibition of excessive NO

generated by the increased NOS1 expression from activated

neurons, which plays an important role in the maintenance of

neuropathic pain trough microglial activation. The activated

microglia promotes the consolidation and progression of neuro-

pathic pain by the up-regulation of several inflammatory pathways

including the NOS2/NO pathway, among others. Thus, the

activation of the HO-1/CO pathway on microglial cells would

control and limit the spreading of this neuroinflammatory process

by regulating the enhanced expression of NOS2. In addition, CO

located in neurons could also participates in the modulation of

neuropathic pain by decreasing the production of NOS1 which

would restrict the activation of microglia and attenuates the

development of neuropathic pain.

This study reports for first time that an interaction between the

CO and NO systems is taking place following sciatic nerve injury.

Our data also reveal that exogenous delivery of CO using CO-

releasing molecules or increasing the endogenous CO production

with cobalt protoporphyrin IX may represent a novel stratagem in

the management of neuropathic pain.

Materials and Methods

Ethics Statement
Animal procedures were conducted in accordance with the

guidelines of the European Communities, Directive 86/609/EEC

regulating animal research and approved by the local ethical

committee of our Institution (Comissió d’Etica en l’Experimenta-

ció Animal i Humana de la Universitat Autònoma de Barcelona,

#6266). All efforts were made to minimize animal suffering, and

to reduce the number of animals used.

Animals
In vivo experiments were performed in male NOS2-KO mice

(C57BL/6J background) purchased from Jackson Laboratories

(Bar Harbor, ME, USA) and in WT mice with the same genetic

background (C57BL/6J) acquired from Harlan Laboratories

(Barcelona, Spain). All mice weighing 21 to 25 g were housed

under 12-h/12-h light/dark conditions in a room with controlled

temperature (22uC) and humidity (66%). Animals had free access

to food and water and were used after a minimum of 6 days

acclimatization to the housing conditions. All experiments were

conducted between 9:00 AM and 5:00 PM.

Induction of Neuropathic Pain
Neuropathic pain was induced by chronic constriction of the

sciatic nerve [6]. Briefly, sciatic nerve ligation was performed

under isoflurane anesthesia (3% induction, 2% maintenance). The

biceps femoris and the gluteus superficialis were separated by blunt

dissection, and the right sciatic nerve was exposed. The injury was

produced by tying three ligatures around the sciatic nerve as

described by Bennett and Xie [34]. The ligatures (4/0 silk) were

tied loosely around the nerve with 1 mm spacing, until they

elicited a brief twitch in the respective hindlimb, which prevented

over-tightening of the ligations, taking care to preserve epineural

circulation. Sham-operated mice that underwent exposure of the

right sciatic nerve without ligature were used as controls.

The development of mechanical and thermal allodynia as well

as thermal hyperalgesia was evaluated by using the von Frey

filaments, cold plate and plantar tests, respectively. All animals

were tested in each paradigm before surgery and at 10, 14 and

20 days after sciatic nerve injury.

Nociceptive Behavioral Tests
Mechanical allodynia was quantified by measuring the hind

paw withdrawal response to von Frey filament stimulation. In

brief, animals were placed in a PlexiglasH box (20 cm high, 9 cm

diameter) with a wire grid bottom through which the von Frey

filaments (North Coast Medical, Inc., San Jose, CA, USA) bending

force range from 0.008 to 3.5 g, were applied by using a modified

version of the up–down paradigm, as previously reported by

Chaplan et al [35]. The filament of 0.4 g was used first and the

3.5 g filament was used as a cut-off. Then, the strength of the next

filament was decreased or increased according to the response.

The threshold of response was calculated from the sequence of

filament strength used during the up–down procedure by using an

Excel program (Microsoft Iberia SRL, Barcelona, Spain) that

includes curve fitting of the data. Clear paw withdrawal, shaking

or licking of the paw were considered nociceptive-like responses.

Both ipsilateral and contralateral hind paws were tested. Animals

were allowed to habituate for 1 h before testing in order to allow

an appropriate behavioral immobility.

Thermal hyperalgesia was assessed as previously reported by

Hargreaves et al [36]. Paw withdrawal latency in response to

radiant heat was measured using the plantar test apparatus (Ugo

Basile, Italy). Briefly, mice were placed in Plexiglas boxes (20 cm

high 69 cm diameter) positioned on a glass surface. The heat

source was positioned under the plantar surface of the hind paw

and activated with a light beam intensity, chosen in preliminary

studies to give baseline latencies from 8 to 9 s in control mice. A

cut-off time of 12s was used to prevent tissue damage in absence of

response. The mean paw withdrawal latencies from the ipsilateral

and contralateral hind paws were determined from the average of

3 separate trials, taken at 5 min intervals to prevent thermal

sensitization and behavioral disturbances. Animals were habituat-

ed to the environment for 1 h before the experiment to become

quiet and to allow testing.

Thermal allodynia to cold stimulus was assessed by using the

hot/cold-plate analgesia meter (Ugo Basile, Italy), previously

described by Bennett and Xie [34]. The number of elevations of

each hind paw was recorded in the mice exposed to the cold plate

(460.5uC) for 5 minutes.

Western Blot Analysis
Sham-operated and sciatic nerve-injured mice were sacrificed at

20 days after surgery by cervical dislocation. Tissues from the

ipsilateral lumbar section of spinal cord and dorsal root ganglia (L3

to L5) were removed immediately after sacrifice, frozen in liquid

nitrogen and stored at 280uC until assay. Samples from the spinal

cord and dorsal root ganglia from three to five animals were

pooled into one experimental sample to obtain enough protein

levels for performing the western blot analysis. The HO-1, HO-2,

CD11b/c, NOS1 and NOS2 protein levels were analyzed by

Western blot. Tissues were homogenized in ice-cold lysis buffer

(50 mM Tris?Base, 150 nM NaCl, 1% NP-40, 2 mM EDTA,
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1 mM phenylmethylsulfonyl fluoride, 0.5 Triton X-100, 0.1%

SDS, 1 mM Na3VO4, 25 mM NaF, 0.5% protease inhibitor

cocktail, 1% phosphatase inhibitor cocktail). All reagents were

purchased at Sigma (St. Louis, MO, USA) with the exception of

NP-40 from Calbiochem. The crude homogenate was solubilised

1 hour at 4uC, sonicated for 10 seconds and centrifugated at 4uC
for 15 min at 7006g. The supernatants (50 or 100 mg of total

protein) were mixed with 46 laemmli loading buffer and then

loaded onto 4% stacking/10% separating SDS-polyacrylamide

gels. The proteins were electrophoretically transferred onto PVDF

membrane for 120 minutes for HO-1, HO-2 and CD11b/c or

over night for NOS1 and NOS2 detection, blocked with PBST

+5% nonfat dry milk, and subsequently incubated overnight at

4uC with a polyclonal rabbit anti-HO-1 (1:300, Stressgen, Ann

Arbor, MI), a polyclonal rabbit anti-HO-2 (1:1000, Stressgen, Ann

Arbor, MI), a polyclonal rabbit anti-CD11b/c (1:300, Novus

Biologicals) antibody against the type 3 complement receptor to

detect activated microglial cells [25], a polyclonal rabbit anti-

NOS1 antibody (1:100, BD Transduction Laboratories, San

Diego, CA, USA) or a polyclonal rabbit anti-NOS2 antibody

(1:200, Chemicon, Millipore). The proteins were detected by

a horseradish peroxidase-conjugated anti-rabbit secondary anti-

body (GE Healthcare, Little Chalfont, Buckinghamshire, UK) and

visualized by chemiluminescence reagents provided with the ECL

kit (Amersham Pharmacia Biotech, Piscataway, NJ, USA) and

exposure onto hyperfilm (GE, Healthcare). The intensity of blots

was quantified by densitometry. The membranes were stripped

and reproved with a monoclonal rabbit anti-b-actin antibody

(1:10.000, Sigma, St. Louis, MO, USA) used as a loading control.

Experimental Protocol
In a first set of experiments we assessed the expression of

neuropathic pain by using the mouse model of the chronic

constriction of sciatic nerve previously used by us [6]. After the

habituation period, baseline responses were established in the

following sequence: von Frey filaments, plantar and cold plate

tests. After that neuropathic pain was induced, and WT or NOS2-

KO animals were again tested in each paradigm at days 10, 14

and 20 after surgery. Sham-operated mice were used as controls.

Sciatic nerve-injured or sham-operated WT or NOS2-KO

animals received the intraperitoneal administration of two CO-

RMs (CORM-2 or CORM-3, at 5 mg/kg of body weight twice

a day) [21,27], an HO-1 inducer (CoPP, at 2.5 mg/kg of body

weight twice a day) [37] or vehicle, from days 10 to 20 after

surgery.

In other set of experiments, taking into account the analogous

effects produced by CORM-2 and CORM-3 on the inhibition of

the allodynia and hyperalgesia induced by sciatic nerve injury and

in order to minimize the number of animals used, the protein

levels of HO-1, HO-2, CD11b/c, NOS1 and NOS2 in the

ipsilateral site of the spinal cord and/or dorsal root ganglia from

sciatic nerve-injured WT and NOS2-KO mice at 20 days after

surgery, were only evaluated in CORM-2 and CoPP treated

animals, by using western blot assay. In these experiments sham-

operated mice treated with vehicle have been used as a control.

Drugs
CORM-2 (tricarbonyldichlororuthenium(II)dimer) was pur-

chased from Sigma-Aldrich (St. Louis, MO), CoPP from Frontier

scientific (Livchem GmbH & Co, Frankfurt, Germany) and

CORM-3 (tricarbonylchloro (glycinate)ruthenium (II)) was syn-

thesized as previously described by Motterlini et al. [21]. CORM-

2 and CoPP were dissolved in dimethyl sulfoxide (DMSO; 1%

solution in saline) and CORM-3 in saline. All drugs were freshly

prepared before use and intraperitoneally administered in a final

volume of 10 ml/kg, twice a day. The control group received the

same volume of vehicle.

Statistical Analysis
Data are expressed as mean 6 standard error of the mean

(SEM). For each genotype and test assessed, the comparison of the

effects produced by CORM-2, CORM-3 or CoPP vs. the effects

produced by vehicle in nerve-injured and sham-operated WT or

NOS2-KO mice were evaluated by using a using a three way

ANOVA (surgery, treatment and time as between factors of

variation) followed by the corresponding one way ANOVA and

the Student Newman Keuls test.

Changes in the expression of HO-1, HO-2, CD11b/c, NOS1

and NOS2 in the spinal cord and/or dorsal root ganglia from

sciatic nerve-injured WT and NOS2-KO mice treated with

vehicle, CORM-2 or CoPP were analyzed by using a one way

ANOVA followed by the Student Newman Keuls test. A value of

p,0.05 was considered as a significant.
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