K. Hochedlinger and R. Jaenisch, Nuclear reprogramming and pluripotency, Nature, vol.24, issue.7097, pp.1061-1067, 2006.
DOI : 10.1038/nature04955

A. Mattout and E. Meshorer, Chromatin plasticity and genome organization in pluripotent embryonic stem cells, Current Opinion in Cell Biology, vol.22, issue.3, pp.334-341, 2010.
DOI : 10.1016/j.ceb.2010.02.001

Z. Wang, C. Zang, J. Rosenfeld, D. Schones, A. Barski et al., Combinatorial patterns of histone acetylations and methylations in the human genome, Nature Genetics, vol.18, issue.7, pp.40897-903, 2008.
DOI : 10.1073/pnas.0400782101

N. Heintzman and B. Ren, Finding distal regulatory elements in the human genome, Current Opinion in Genetics & Development, vol.19, issue.6, pp.541-549, 2009.
DOI : 10.1016/j.gde.2009.09.006

B. Li, M. Carey, and J. Workman, The Role of Chromatin during Transcription, Cell, vol.128, issue.4, pp.707-719, 2007.
DOI : 10.1016/j.cell.2007.01.015

T. Mikkelsen, M. Ku, D. Jaffe, I. B. Lieberman, E. Giannoukos et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells, Nature, vol.99, issue.7153, pp.448553-560, 2007.
DOI : 10.1038/nature06008

B. Bernstein, T. Mikkelsen, X. Xie, M. Kamal, D. Huebert et al., A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells, Cell, vol.125, issue.2, pp.315-326, 2006.
DOI : 10.1016/j.cell.2006.02.041

F. Mohn, M. Weber, M. Rebhan, T. Roloff, J. Richter et al., Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors, Mol Cell, issue.6, pp.30755-766, 2008.

N. Heintzman, G. Hon, R. Hawkins, P. Kheradpour, A. Stark et al., Histone modifications at human enhancers reflect global cell-type-specific gene expression, Nature, vol.17, issue.7243, pp.459108-112, 2009.
DOI : 10.1038/nature07829

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910248

A. Krebs, K. Karmodiya, M. Lindahl-allen, K. Struhl, and L. Tora, SAGA and ATAC Histone Acetyl Transferase Complexes Regulate Distinct Sets of Genes and ATAC Defines a Class of p300-Independent Enhancers, Molecular Cell, vol.44, issue.3, pp.410-423, 2011.
DOI : 10.1016/j.molcel.2011.08.037

M. Creyghton, A. Cheng, G. Welstead, T. Kooistra, B. Carey et al., Histone H3K27ac separates active from poised enhancers and predicts developmental state, Proceedings of the National Academy of Sciences, vol.107, issue.50, pp.21931-21936, 2010.
DOI : 10.1073/pnas.1016071107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003124

A. Rada-iglesias, R. Bajpai, T. Swigut, S. Brugmann, R. Flynn et al., A unique chromatin signature uncovers early developmental enhancers in humans, Nature, vol.112, issue.7333, pp.470279-283, 2011.
DOI : 10.1038/nature09692

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445674

K. Anamika, A. Krebs, J. Thompson, O. Poch, D. Devys et al., Lessons from genome-wide studies: an integrated definition of the coactivator function of histone acetyl transferases, Epigenetics & Chromatin, vol.3, issue.1, p.18, 2010.
DOI : 10.1186/1756-8935-3-18

URL : https://hal.archives-ouvertes.fr/inserm-00663877

Z. Wang, C. Zang, K. Cui, D. Schones, A. Barski et al., Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes, Cell, vol.138, issue.5, pp.1019-1031, 2009.
DOI : 10.1016/j.cell.2009.06.049

H. Hezroni, I. Tzchori, A. Davidi, A. Mattout, A. Biran et al., H3K9 histone acetylation predicts pluripotency and reprogramming capacity of ES cells, Nucleus, vol.78, issue.4, pp.300-309, 2011.
DOI : 10.1002/jcp.21714

J. Krejcí, R. Uhlírová, G. Galiová, S. Kozubek, J. Smigová et al., Genome-wide reduction in H3K9 acetylation during human embryonic stem cell differentiation, Journal of Cellular Physiology, vol.32, issue.3, pp.677-687, 2009.
DOI : 10.1002/jcp.21714

Q. Jin, L. Yu, L. Wang, Z. Zhang, L. Kasper et al., Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation, The EMBO Journal, vol.29, issue.2, pp.249-262, 2011.
DOI : 10.1038/emboj.2010.318

Z. Nagy and T. L. , Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation, Oncogene, vol.18, issue.37, pp.5341-5357, 2007.
DOI : 10.1016/j.molcel.2005.09.025

URL : https://hal.archives-ouvertes.fr/hal-00189146

K. Lee and J. Workman, Histone acetyltransferase complexes: one size doesn't fit all, Nature Reviews Molecular Cell Biology, vol.75, issue.4, pp.284-295, 2007.
DOI : 10.1038/nrm2145

S. Fuchs, K. Krajewski, R. Baker, V. Miller, and B. Strahl, Influence of Combinatorial Histone Modifications on Antibody and Effector Protein Recognition, Current Biology, vol.21, issue.1, pp.53-58, 2011.
DOI : 10.1016/j.cub.2010.11.058

T. Egelhofer, A. Minoda, S. Klugman, K. Lee, P. Kolasinska-zwierz et al., An assessment of histone-modification antibody quality, Nature Structural & Molecular Biology, vol.18, issue.1, pp.91-93, 2011.
DOI : 10.1016/j.stem.2010.03.018

H. Shin, T. Liu, A. Manrai, and X. Liu, CEAS: cis-regulatory element annotation system, Bioinformatics, vol.25, issue.19, pp.2605-2606, 2009.
DOI : 10.1093/bioinformatics/btp479

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/25/19/2605

Y. Zhang, T. Liu, C. Meyer, J. Eeckhoute, D. Johnson et al., Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, issue.9, p.137, 2008.
DOI : 10.1186/gb-2008-9-9-r137

S. Efroni, R. Duttagupta, J. Cheng, H. Dehghani, D. Hoeppner et al., Global Transcription in Pluripotent Embryonic Stem Cells, Cell Stem Cell, vol.2, issue.5, pp.437-447, 2008.
DOI : 10.1016/j.stem.2008.03.021

S. Roy, J. Ernst, P. Kharchenko, P. Kheradpour, N. Negre et al., Identification of functional elements and regulatory circuits by Drosophila modENCODE, Science, issue.6012, pp.3301787-1797, 2010.

H. Boeger, J. Griesenbeck, J. Strattan, and R. Kornberg, Nucleosomes Unfold Completely at a Transcriptionally Active Promoter, Molecular Cell, vol.11, issue.6, pp.1587-1598, 2003.
DOI : 10.1016/S1097-2765(03)00231-4

URL : http://doi.org/10.1016/s1097-2765(03)00231-4

A. Deaton and A. Bird, CpG islands and the regulation of transcription, Genes & Development, vol.25, issue.10, pp.1010-1022, 2011.
DOI : 10.1101/gad.2037511

W. Kent, C. Sugnet, T. Furey, K. Roskin, T. Pringle et al., The Human Genome Browser at UCSC, Genome Research, vol.12, issue.6, pp.996-1006, 2002.
DOI : 10.1101/gr.229102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC186604

F. Antequera and A. Bird, Number of CpG islands and genes in human and mouse., Proceedings of the National Academy of Sciences, vol.90, issue.24, pp.9011995-11999, 1993.
DOI : 10.1073/pnas.90.24.11995

T. Kim, M. Hemberg, J. Gray, A. Costa, D. Bear et al., Widespread transcription at neuronal activity-regulated enhancers, Nature, vol.57, issue.7295, pp.465182-187, 2010.
DOI : 10.1186/gb-2003-4-5-p3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020079

D. Santa, F. Barozzi, I. Mietton, F. Ghisletti, S. Polletti et al., A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers, PLoS Biology, vol.179, issue.5, p.1000384, 2010.
DOI : 10.1371/journal.pbio.1000384.s019

D. Wang, I. Garcia-bassets, C. Benner, W. Li, X. Su et al., Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA, Nature, vol.18, issue.7351, pp.474390-394, 2011.
DOI : 10.1038/nature10006

T. Ye, A. Krebs, M. Choukrallah, C. Keime, F. Plewniak et al., seqMINER: an integrated ChIP-seq data interpretation platform, Nucleic Acids Research, vol.39, issue.6, pp.39-74, 2011.
DOI : 10.1093/nar/gkq1287

H. Herz, S. Nakanishi, and A. Shilatifard, The Curious Case of Bivalent Marks, Developmental Cell, vol.17, issue.3, pp.301-303, 2009.
DOI : 10.1016/j.devcel.2009.08.014

P. Kharchenko, A. Alekseyenko, Y. Schwartz, A. Minoda, N. Riddle et al., Comprehensive analysis of the chromatin landscape in Drosophila melanogaster, Nature, vol.97, issue.7339, pp.471480-485, 2010.
DOI : 10.1038/nature09725

A. Shilatifard, Chromatin Modifications by Methylation and Ubiquitination: Implications in the Regulation of Gene Expression, Annual Review of Biochemistry, vol.75, issue.1, pp.243-269, 2006.
DOI : 10.1146/annurev.biochem.75.103004.142422

Y. Zhang, It takes a PHD to interpret histone methylation, Nature Structural & Molecular Biology, vol.426, issue.7, pp.572-574, 2006.
DOI : 10.1038/nsmb0706-572

M. Vermeulen, H. Eberl, F. Matarese, H. Marks, S. Denissov et al., Quantitative Interaction Proteomics and Genome-wide Profiling of Epigenetic Histone Marks and Their Readers, Cell, vol.142, issue.6, pp.142967-980, 2010.
DOI : 10.1016/j.cell.2010.08.020

C. Bian, C. Xu, J. Ruan, K. Lee, T. Burke et al., Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation, The EMBO Journal, vol.17, issue.14, pp.302829-2842, 2011.
DOI : 10.1038/emboj.2011.193

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160252

N. Crump, C. Hazzalin, E. Bowers, R. Alani, P. Cole et al., Dynamic acetylation of all lysine-4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP, Proceedings of the National Academy of Sciences, vol.108, issue.19, pp.7814-7819, 2011.
DOI : 10.1073/pnas.1100099108

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093510

J. Wysocka, T. Swigut, T. Milne, Y. Dou, X. Zhang et al., WDR5 Associates with Histone H3 Methylated at K4 and Is Essential for H3 K4 Methylation and Vertebrate Development, Cell, vol.121, issue.6, pp.5-121859, 2005.
DOI : 10.1016/j.cell.2005.03.036

URL : http://doi.org/10.1016/j.cell.2005.03.036

X. Li, S. Wang, Y. Li, C. Deng, L. Steiner et al., Chromatin boundaries require functional collaboration between the hSET1 and NURF complexes, Blood, vol.118, issue.5, pp.1386-1394, 2011.
DOI : 10.1182/blood-2010-11-319111

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152501

T. Roh, S. Cuddapah, K. Cui, and K. Zhao, The genomic landscape of histone modifications in human T cells, Proceedings of the National Academy of Sciences, vol.103, issue.43, pp.15782-15787, 2006.
DOI : 10.1073/pnas.0607617103

M. Vermeulen, K. Mulder, S. Denissov, W. Pijnappel, F. Van-schaik et al., Selective Anchoring of TFIID to Nucleosomes by Trimethylation of Histone H3 Lysine 4, Cell, vol.131, issue.1, pp.58-69, 2007.
DOI : 10.1016/j.cell.2007.08.016

J. Thomson, P. Skene, J. Selfridge, T. Clouaire, J. Guy et al., CpG islands influence chromatin structure via the CpG-binding protein Cfp1, Nature, vol.25, issue.7291, pp.4641082-1086, 2010.
DOI : 10.1038/nature08924

S. Ooi, C. Qiu, E. Bernstein, K. Li, D. Jia et al., DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA, Nature, vol.826, issue.7154, pp.448714-717, 2007.
DOI : 10.1038/nature05987

H. Wang, R. Cao, L. Xia, H. Erdjument-bromage, C. Borchers et al., Purification and Functional Characterization of a Histone H3-Lysine 4-Specific Methyltransferase, Molecular Cell, vol.8, issue.6, pp.1207-1217, 2001.
DOI : 10.1016/S1097-2765(01)00405-1

R. Margueron, P. Trojer, and D. Reinberg, The key to development: interpreting the histone code?, Current Opinion in Genetics & Development, vol.15, issue.2, pp.163-176, 2005.
DOI : 10.1016/j.gde.2005.01.005

V. Azuara, P. Perry, S. Sauer, M. Spivakov, H. Jorgensen et al., Chromatin signatures of pluripotent cell lines, Nature Cell Biology, vol.28, issue.5, pp.532-538, 2006.
DOI : 10.1038/ncb1403

H. Hezroni, B. Sailaja, and E. Meshorer, Pluripotency-related, Valproic Acid (VPA)-induced Genome-wide Histone H3 Lysine 9 (H3K9) Acetylation Patterns in Embryonic Stem Cells, Journal of Biological Chemistry, vol.286, issue.41, pp.28635977-35988, 2011.
DOI : 10.1074/jbc.M111.266254

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195619

N. Young, P. Dimaggio, M. Plazas-mayorca, R. Baliban, C. Floudas et al., High Throughput Characterization of Combinatorial Histone Codes, Molecular & Cellular Proteomics, vol.8, issue.10, pp.2266-2284, 2009.
DOI : 10.1074/mcp.M900238-MCP200

R. Auerbach, G. Euskirchen, J. Rozowsky, N. Lamarre-vincent, Z. Moqtaderi et al., Mapping accessible chromatin regions using Sono-Seq, Proceedings of the National Academy of Sciences, vol.106, issue.35, pp.10614926-14931, 2009.
DOI : 10.1073/pnas.0905443106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736440