S. Diederichs and D. Haber, Dual Role for Argonautes in MicroRNA Processing and Posttranscriptional Regulation of MicroRNA Expression, Cell, vol.131, issue.6, pp.1097-1108, 2007.
DOI : 10.1016/j.cell.2007.10.032

Y. Yuan, Y. Pei, J. Ma, V. Kuryavyi, M. Zhadina et al., Crystal Structure of A. aeolicus Argonaute, a Site-Specific DNA-Guided Endoribonuclease, Provides Insights into RISC-Mediated mRNA Cleavage, Molecular Cell, vol.19, issue.3, pp.405-419, 2005.
DOI : 10.1016/j.molcel.2005.07.011

A. Lingel, B. Simon, E. Izaurralde, and M. Sattler, Nucleic acid 3???-end recognition by the Argonaute2 PAZ domain, Nature Structural & Molecular Biology, vol.11, issue.6, pp.576-577, 2004.
DOI : 10.1038/nsb1016

A. Boland, F. Tritschler, S. Heimst-dt-Ä, E. Izaurralde, and O. Weichenrieder, Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein, EMBO reports, vol.364, issue.7
DOI : 10.1016/j.molcel.2005.07.011

S. Djuranovic, M. Zinchenko, J. Hur, A. Nahvi, J. Brunelle et al., Allosteric regulation of Argonaute proteins by miRNAs, Nature Structural & Molecular Biology, vol.543, issue.2, pp.144-150, 2010.
DOI : 10.1093/emboj/18.19.5175

J. Song, S. Smith, G. Hannon, and L. Joshua-tor, Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity, Science, vol.305, issue.5689, pp.1434-1437, 2004.
DOI : 10.1126/science.1102514

K. Okamura, A. Ishizuka, H. Siomi, and M. Siomi, Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways, Genes & Development, vol.18, issue.14, pp.1655-1666, 2004.
DOI : 10.1101/gad.1210204

J. Liu, M. Carmell, F. Rivas, C. Marsden, J. Thomson et al., Argonaute2 Is the Catalytic Engine of Mammalian RNAi, Science, vol.305, issue.5689, pp.1437-1441, 2004.
DOI : 10.1126/science.1102513

G. Meister, M. Landthaler, A. Patkaniowska, Y. Dorsett, G. Teng et al., Human Argonaute2 Mediates RNA Cleavage Targeted by miRNAs and siRNAs, Molecular Cell, vol.15, issue.2, pp.185-197, 2004.
DOI : 10.1016/j.molcel.2004.07.007

URL : http://doi.org/10.1016/j.molcel.2004.07.007

M. Rhoades, B. Reinhart, L. Lim, C. Burge, B. Bartel et al., Prediction of Plant MicroRNA Targets, Cell, vol.110, issue.4, pp.513-520, 2002.
DOI : 10.1016/S0092-8674(02)00863-2

M. Jones-rhoades, D. Bartel, and B. Bartel, MicroRNAs AND THEIR REGULATORY ROLES IN PLANTS, Annual Review of Plant Biology, vol.57, issue.1, pp.19-53, 2006.
DOI : 10.1146/annurev.arplant.57.032905.105218

B. Lewis, S. Ih, M. Jones-rhoades, D. Bartel, and C. Burge, Prediction of Mammalian MicroRNA Targets, Cell, vol.115, issue.7, pp.787-798, 2003.
DOI : 10.1016/S0092-8674(03)01018-3

J. Doench and P. Sharp, Specificity of microRNA target selection in translational repression, Genes & Development, vol.18, issue.5, pp.504-511, 2004.
DOI : 10.1101/gad.1184404

J. Brennecke, A. Stark, R. Russell, and S. Cohen, Principles of MicroRNA???Target Recognition, PLoS Biology, vol.5, issue.3, pp.85-85, 2005.
DOI : 10.1371/journal.pbio.0030085.g007

B. Lewis, C. Burge, and D. Bartel, Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets, Cell, vol.120, issue.1, pp.15-20, 2005.
DOI : 10.1016/j.cell.2004.12.035

S. Elbashir, J. Martinez, A. Patkaniowska, W. Lendeckel, and T. Tuschl, Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate, The EMBO Journal, vol.20, issue.23, pp.6877-88, 2001.
DOI : 10.1093/emboj/20.23.6877

A. Grimson, K. Farh, W. Johnston, P. Garrett-engele, L. Lim et al., MicroRNA Targeting Specificity in Mammals: Determinants beyond Seed Pairing, Molecular Cell, vol.27, issue.1, pp.91-105, 2007.
DOI : 10.1016/j.molcel.2007.06.017

W. Filipowicz, S. Bhattacharyya, and N. Sonenberg, Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?, Nature Reviews Genetics, vol.131, issue.2, pp.102-114, 2008.
DOI : 10.1038/nrg2290

J. Forman and H. Coller, The code within the code: microRNAs target coding regions, Cell Cycle, vol.9, issue.8, pp.1533-1574, 2010.
DOI : 10.4161/cc.9.8.11202

J. Lytle, T. Yario, and J. Steitz, Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR, Proceedings of the National Academy of Sciences, vol.104, issue.23, pp.9667-72, 2007.
DOI : 10.1073/pnas.0703820104

D. Bartel, MicroRNAs: Target Recognition and Regulatory Functions, Cell, vol.136, issue.2, pp.215-233, 2009.
DOI : 10.1016/j.cell.2009.01.002

URL : http://doi.org/10.1016/j.cell.2009.01.002

R. Friedman, K. Farh, C. Burge, D. Bartel, A. Krek et al., Most mammalian mRNAs are conserved targets of microRNAs Combinatorial microRNA target predictions, Genome Res . Nat Genet, vol.19, issue.37, pp.92-105, 2005.

B. John, A. Enright, A. Aravin, T. Tuschl, C. Sander et al., Human MicroRNA Targets, PLoS Biology, vol.31, issue.11, pp.363-363, 2004.
DOI : 10.1371/journal.pbio.0020363.st013

URL : http://doi.org/10.1371/journal.pbio.0020363

D. Betel, M. Wilson, A. Gabow, D. Marks, and C. Sander, The microRNA.org resource: targets and expression, Nucleic Acids Research, vol.36, issue.Database, pp.149-153, 2008.
DOI : 10.1093/nar/gkm995

M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul, and E. Segal, The role of site accessibility in microRNA target recognition, Nature Genetics, vol.26, issue.10, pp.1278-1284, 2007.
DOI : 10.1038/ng2135

D. Gaidatzis, E. Van-nimwegen, J. Hausser, and M. Zavolan, Inference of miRNA targets using evolutionary conservation and pathway analysis, BMC Bioinformatics, vol.8, issue.1, pp.69-69, 2007.
DOI : 10.1186/1471-2105-8-69

M. Kiriakidou, P. Nelson, A. Kouranov, P. Fitziev, C. Bouyioukos et al., A combined computational-experimental approach predicts human microRNA targets, Genes & Development, vol.18, issue.10, pp.1165-1178, 2004.
DOI : 10.1101/gad.1184704

P. Sethupathy, M. Megraw, and A. Hatzigeorgiou, A guide through present computational approaches for the identification of mammalian microRNA targets, Nature Methods, vol.11, issue.11, pp.881-886, 2006.
DOI : 10.1038/nmeth954

L. Lam, X. Lu, H. Zhang, R. Lesniewski, S. Rosenberg et al., A MicroRNA Screen to Identify Modulators of Sensitivity to BCL2 Inhibitor ABT-263 (Navitoclax), Molecular Cancer Therapeutics, vol.9, issue.11, pp.2943-50, 2010.
DOI : 10.1158/1535-7163.MCT-10-0427

P. Sethupathy, B. Corda, and A. Hatzigeorgiou, TarBase: A comprehensive database of experimentally supported animal microRNA targets, RNA, vol.12, issue.2, pp.192-197, 2006.
DOI : 10.1261/rna.2239606

G. Papadopoulos, M. Reczko, V. Simossis, P. Sethupathy, and A. Hatzigeorgiou, The database of experimentally supported targets: a functional update of TarBase, Nucleic Acids Research, vol.37, issue.Database, pp.155-158, 2009.
DOI : 10.1093/nar/gkn809

T. V. Pestova, G. Kolupaeva, I. Lomakin, E. Pilipenko, I. Shatsky et al., Molecular mechanisms of translation initiation in eukaryotes, Proceedings of the National Academy of Sciences, vol.98, issue.13, pp.7029-7036, 2001.
DOI : 10.1073/pnas.111145798

F. Gebauer and M. Hentze, Molecular mechanisms of translational control, Nature Reviews Molecular Cell Biology, vol.19, issue.10, pp.827-835, 2004.
DOI : 10.1126/SCIENCE.1064023

K. Kean, The role of mRNA 5???-noncoding and 3???-end sequences on 40S ribosomal subunit recruitment, and how RNA viruses successfully compete with cellular mRNAs to ensure their own protein synthesis, Biology of the Cell, vol.95, issue.3-4, pp.129-139, 2003.
DOI : 10.1016/S0248-4900(03)00030-3

D. Humphreys, B. Westman, D. Martin, and T. Preiss, MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function, Proceedings of the National Academy of Sciences, vol.102, issue.47, pp.16961-16966, 2005.
DOI : 10.1073/pnas.0506482102

R. Pillai, S. Bhattacharyya, C. Artus, T. Zoller, N. Cougot et al., Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells, Science, vol.309, issue.5740, pp.1573-1576, 2005.
DOI : 10.1126/science.1115079

M. Kiriakidou, G. Tan, S. Lamprinaki, D. Planell-saguer, M. Nelson et al., An mRNA m7G Cap Binding-like Motif within Human Ago2 Represses Translation, Cell, vol.129, issue.6, pp.1141-1151, 2007.
DOI : 10.1016/j.cell.2007.05.016

T. Chendrimada, K. Finn, J. X. Baillat, D. Gregory, R. Liebhaber et al., MicroRNA silencing through RISC recruitment of eIF6, Nature, vol.23, issue.7146
DOI : 10.1038/nature05841

P. Olsen and A. V. , The lin-4 Regulatory RNA Controls Developmental Timing in Caenorhabditis elegans by Blocking LIN-14 Protein Synthesis after the Initiation of Translation, Developmental Biology, vol.216, issue.2, pp.671-680, 1999.
DOI : 10.1006/dbio.1999.9523

K. Seggerson, L. Tang, and E. Moss, Two Genetic Circuits Repress the Caenorhabditis elegans Heterochronic Gene lin-28 after Translation Initiation, Developmental Biology, vol.243, issue.2, pp.215-225, 2002.
DOI : 10.1006/dbio.2001.0563

C. Petersen, M. Bordeleau, J. Pelletier, and P. Sharp, Short RNAs Repress Translation after Initiation in Mammalian Cells, Molecular Cell, vol.21, issue.4, pp.533-542, 2006.
DOI : 10.1016/j.molcel.2006.01.031

P. Maroney, Y. Yu, J. Fisher, and T. Nilsen, Evidence that microRNAs are associated with translating messenger RNAs in human cells, Nature Structural & Molecular Biology, vol.4, issue.12, pp.1102-1107, 2006.
DOI : 10.1038/nsmb1174

S. Nottrott, M. Simard, and J. Richter, Human let-7a miRNA blocks protein production on actively translating polyribosomes, Nature Structural & Molecular Biology, vol.285, issue.12, pp.1108-1114, 2006.
DOI : 10.1038/nsmb1173

S. Bagga, J. Bracht, S. Hunter, K. Massirer, J. Holtz et al., Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation, Cell, vol.122, issue.4, pp.553-563, 2005.
DOI : 10.1016/j.cell.2005.07.031

L. Wu and J. Belasco, Micro-RNA Regulation of the Mammalian lin-28 Gene during Neuronal Differentiation of Embryonal Carcinoma Cells, Molecular and Cellular Biology, vol.25, issue.21, pp.9198-9208, 2005.
DOI : 10.1128/MCB.25.21.9198-9208.2005

L. Wu, J. Fan, and J. Belasco, MicroRNAs direct rapid deadenylation of mRNA, Proceedings of the National Academy of Sciences, vol.103, issue.11, pp.4034-4039, 2006.
DOI : 10.1073/pnas.0510928103

R. Parker and H. Song, The enzymes and control of eukaryotic mRNA turnover, Nature Structural & Molecular Biology, vol.11, issue.2, pp.121-127, 2004.
DOI : 10.1038/nsmb724

A. Eulalio, I. Behm-ansmant, and E. Izaurralde, P bodies: at the crossroads of post-transcriptional pathways, Nature Reviews Molecular Cell Biology, vol.89, issue.1, pp.9-22, 2007.
DOI : 10.1038/nrm2080

D. Ingelfinger, D. Arndt-jovin, R. Achsel, and T. , The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci, RNA, vol.8, pp.1489-1501, 2002.

U. Sheth and R. Parker, Decapping and Decay of Messenger RNA Occur in Cytoplasmic Processing Bodies, Science, vol.300, issue.5620, pp.805-808, 2003.
DOI : 10.1126/science.1082320

M. Brengues, D. Teixeira, and R. Parker, Movement of Eukaryotic mRNAs Between Polysomes and Cytoplasmic Processing Bodies, Science, vol.310, issue.5747, pp.486-489, 2005.
DOI : 10.1126/science.1115791

T. Eystathioy, E. Chan, S. Tenenbaum, J. Keene, K. Griffith et al., A Phosphorylated Cytoplasmic Autoantigen, GW182, Associates with a Unique Population of Human mRNAs within Novel Cytoplasmic Speckles, Molecular Biology of the Cell, vol.13, issue.4, pp.1338-1351, 2002.
DOI : 10.1091/mbc.01-11-0544

J. Liu, F. Rivas, J. Wohlschlegel, J. Yates, R. Parker et al., A role for the P-body component GW182 in microRNA function, Nature Cell Biology, vol.128, issue.12, pp.1261-1266, 2005.
DOI : 10.1016/S1534-5807(03)00400-3

N. Kedersha, A. P. Cougot, N. Babajko, and S. , Stress granules: sites of mRNA triage that regulate mRNA stability and translatability, Biochemical Society Transactions, vol.30, issue.6, pp.963-969, 2002.
DOI : 10.1042/bst0300963

N. Kedersha, G. Stoecklin, M. Ayodele, P. Yacono, J. Lykke-andersen et al., Stress granules and processing bodies are dynamically linked sites of mRNP remodeling, The Journal of Cell Biology, vol.20, issue.6, pp.871-884, 2005.
DOI : 10.1242/jcs.01477

S. Vasudevan and J. Steitz, AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2, Cell, vol.128, issue.6, pp.1105-1118, 2007.
DOI : 10.1016/j.cell.2007.01.038

A. Eiring, J. Harb, P. Neviani, C. Garton, J. Oaks et al., miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts, Cell, vol.140, issue.5, pp.652-65, 2010.
DOI : 10.1016/j.cell.2010.01.007

J. Brennecke, D. Hipfner, A. Stark, R. Russell, and S. Cohen, bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila, Cell, vol.113, issue.1, pp.25-36, 2003.
DOI : 10.1016/S0092-8674(03)00231-9

C. Chen, L. Li, H. Lodish, and D. Bartel, MicroRNAs Modulate Hematopoietic Lineage Differentiation, Science, vol.303, issue.5654, pp.83-86, 2004.
DOI : 10.1126/science.1091903

B. Harfe, MicroRNAs in vertebrate development, Current Opinion in Genetics & Development, vol.15, issue.4, pp.410-415, 2005.
DOI : 10.1016/j.gde.2005.06.012

A. Pasquinelli, S. Hunter, and J. Bracht, MicroRNAs: a developing story, Current Opinion in Genetics & Development, vol.15, issue.2, pp.200-205, 2005.
DOI : 10.1016/j.gde.2005.01.002

J. Lu, G. Getz, E. Miska, E. Alvarez-saavedra, J. Lamb et al., MicroRNA expression profiles classify human cancers, Nature, vol.1, issue.7043, pp.834-838, 2005.
DOI : 10.1016/S1535-6108(02)00018-1

S. Volinia, G. Calin, C. Liu, S. Ambs, A. Cimmino et al., A microRNA expression signature of human solid tumors defines cancer gene targets, Proceedings of the National Academy of Sciences, vol.103, issue.7, pp.2257-61, 2006.
DOI : 10.1073/pnas.0510565103

Y. Wang and C. Lee, MicroRNA and cancer - focus on apoptosis, Journal of Cellular and Molecular Medicine, vol.107, issue.Suppl, pp.12-23, 2009.
DOI : 10.1111/j.1582-4934.2008.00510.x

E. Lages, A. Guttin, M. Atifi, C. Ramus, H. Ipas et al., MicroRNA and Target Protein Patterns Reveal Physiopathological Features of Glioma Subtypes, PLoS ONE, vol.30, issue.9, pp.20600-2011
DOI : 10.1371/journal.pone.0020600.s009

URL : https://hal.archives-ouvertes.fr/inserm-00734099

M. Kitano, R. Rahbari, E. Patterson, Y. Xiong, N. Prasad et al., Expression Profiling of Difficult-to-diagnose Thyroid Histologic Subtypes Shows Distinct Expression Profiles and Identify Candidate Diagnostic microRNAs, Annals of Surgical Oncology, vol.111, issue.7175, pp.3443-52, 2011.
DOI : 10.1245/s10434-011-1766-4

Y. Youssef, N. White, J. Grigull, A. Krizova, C. Samy et al., Accurate Molecular Classification of Kidney Cancer Subtypes Using MicroRNA Signature, European Urology, vol.59, issue.5, pp.721-751, 2011.
DOI : 10.1016/j.eururo.2011.01.004

W. Merritt, Y. Lin, L. Han, A. Kamat, W. Spannuth et al., Dicer, Drosha, and Outcomes in Patients with Ovarian Cancer, Dicer, Drosha, and outcomes in patients with ovarian cancer, pp.2641-2650, 2008.
DOI : 10.1056/NEJMoa0803785

M. Sand, T. Gambichler, M. Skrygan, D. Sand, N. Scola et al., Expression Levels of the microRNA Processing Enzymes Drosha and Dicer in Epithelial Skin Cancer, Cancer Investigation, vol.6, issue.6, pp.649-653, 2010.
DOI : 10.1111/j.1349-7006.2005.00015.x

N. Sugito, H. Ishiguro, Y. Kuwabara, M. Kimura, A. Mitsui et al., RNASEN Regulates Cell Proliferation and Affects Survival in Esophageal Cancer Patients, Clinical Cancer Research, vol.12, issue.24, pp.7322-7328, 2006.
DOI : 10.1158/1078-0432.CCR-06-0515

S. Chiosea, E. Jelezcova, U. Chandran, M. Acquafondata, T. Mchale et al., Up-Regulation of Dicer, a Component of the MicroRNA Machinery, in Prostate Adenocarcinoma, The American Journal of Pathology, vol.169, issue.5, pp.1812-1820, 2006.
DOI : 10.2353/ajpath.2006.060480

S. Chiosea, E. Jelezcova, U. Chandran, J. Luo, G. Mantha et al., Overexpression of Dicer in Precursor Lesions of Lung Adenocarcinoma, Cancer Research, vol.67, issue.5, pp.2345-2350, 2007.
DOI : 10.1158/0008-5472.CAN-06-3533

Y. Karube, H. Tanaka, H. Osada, S. Tomida, Y. Tatematsu et al., Reduced expression of Dicer associated with poor prognosis in lung cancer patients, Cancer Science, vol.10, issue.2, pp.111-115, 2005.
DOI : 10.1038/ng0494-332

S. Melo, S. Ropero, C. Moutinho, L. Aaltonen, H. Yamamoto et al., A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function, Nature Genetics, vol.59, issue.3, pp.365-70, 2009.
DOI : 10.1073/pnas.0511155103

L. Boominathan, The Tumor Suppressors p53, p63, and p73 Are Regulators of MicroRNA Processing Complex, PLoS ONE, vol.14, issue.7, pp.10615-10615, 2010.
DOI : 10.1371/journal.pone.0010615.s003

G. Calin, C. Sevignani, C. Dumitru, T. Hyslop, E. Noch et al., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers, Proceedings of the National Academy of Sciences, vol.101, issue.9, pp.2999-3004, 2004.
DOI : 10.1073/pnas.0307323101

L. Zhang and G. Coukos, MicroRNAs: A New Insight into Cancer Genome, Cell Cycle, vol.5, issue.19, pp.2216-2219, 2006.
DOI : 10.4161/cc.5.19.3319

M. Bousquet, C. Quelen, R. Rosati, V. Mas, . Mansat-de et al., Myeloid cell differentiation arrest by miR-125b-1 in myelodysplasic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation, The Journal of Experimental Medicine, vol.55, issue.11, pp.2499-2506, 2008.
DOI : 10.1084/jem.178.6.1995

F. Saito-ohara, I. Imoto, J. Inoue, H. Hosoi, A. Nakagawara et al., PPM1D is a potential target for 17q gain in neuroblastoma, Cancer Res, vol.63, pp.1876-1883, 2003.

M. Saunders, H. Liang, and W. Li, Human polymorphism at microRNAs and microRNA target sites, Proceedings of the National Academy of Sciences, vol.104, issue.9, pp.3300-3305, 2007.
DOI : 10.1073/pnas.0611347104

K. Jazdzewski, E. Murray, K. Franssila, B. Jarzab, D. Schoenberg et al., Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma, Proceedings of the National Academy of Sciences, vol.105, issue.20, pp.7269-7274, 2008.
DOI : 10.1073/pnas.0802682105

B. Xu, N. Feng, P. Li, J. Tao, D. Wu et al., A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo, Prostate, vol.70, pp.467-472, 2010.

R. Duan, C. Pak, and J. P. , Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA, Human Molecular Genetics, vol.16, issue.9, pp.1124-1131, 2007.
DOI : 10.1093/hmg/ddm062

W. Li, R. Duan, F. Kooy, S. Sherman, W. Zhou et al., Germline mutation of microRNA-125a is associated with breast cancer, Journal of Medical Genetics, vol.46, issue.5, pp.358-360, 2009.
DOI : 10.1136/jmg.2008.063123

Z. Hu, J. Chen, T. Tian, X. Zhou, H. Gu et al., Genetic variants of miRNA sequences and non???small cell lung cancer survival, Journal of Clinical Investigation, vol.118, pp.2600-2608, 2008.
DOI : 10.1172/JCI34934

G. Calin, M. Ferracin, A. Cimmino, D. Leva, G. Shimizu et al., A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia, New England Journal of Medicine, vol.353, issue.17, pp.1793-801, 2005.
DOI : 10.1056/NEJMoa050995

A. Kotani, D. Ha, D. Schotte, M. Boer, S. Armstrong et al., A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 Acute Lymphocytic Leukemia cells, Cell Cycle, vol.9, issue.6, pp.1037-1079, 2010.
DOI : 10.4161/cc.9.6.11011

U. Ohler, S. Yekta, L. Lim, D. Bartel, and C. Burge, Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification, RNA, vol.10, issue.9
DOI : 10.1261/rna.5206304

Y. Xi, R. Shalgi, O. Fodstad, Y. Pilpel, and J. Ju, Differentially Regulated Micro-RNAs and Actively Translated Messenger RNA Transcripts by Tumor Suppressor p53 in Colon Cancer, Clinical Cancer Research, vol.12, issue.7, pp.2014-2024, 2006.
DOI : 10.1158/1078-0432.CCR-05-1853

T. Chang, E. Wentzel, O. Kent, K. Ramachandran, M. Mullendore et al., Transactivation of miR-34a by p53 Broadly??Influences Gene Expression and??Promotes??Apoptosis, Molecular Cell, vol.26, issue.5, pp.745-752, 2007.
DOI : 10.1016/j.molcel.2007.05.010

N. Raver-shapira, E. Marciano, E. Meiri, Y. Spector, N. Rosenfeld et al., Transcriptional Activation of miR-34a Contributes to p53-Mediated Apoptosis, Molecular Cell, vol.26, issue.5, pp.731-743, 2007.
DOI : 10.1016/j.molcel.2007.05.017

V. Tarasov, P. Jung, B. Verdoodt, D. Lodygin, A. Epanchintsev et al., Differential Regulation of microRNAs by p53 Revealed by Massively Parallel Sequencing: miR-34a is a p53 Target That Induces Apoptosis and G1-arrest, Cell Cycle, vol.6, issue.13, pp.1586-1593, 2007.
DOI : 10.4161/cc.6.13.4436

R. Brosh, R. Shalgi, A. Liran, G. Landan, K. Korotayev et al., p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation, Molecular Systems Biology, vol.19, pp.229-229, 2008.
DOI : 10.1016/j.ccr.2006.01.025

M. Bueno, G. Mez-de-cedr-n-Ó-Ó, M. Laresgoiti, U. , F. Ndez-piqueras-Á et al., Multiple E2F-Induced MicroRNAs Prevent Replicative Stress in Response to Mitogenic Signaling, Molecular and Cellular Biology, vol.30, issue.12, pp.2983-2995, 2005.
DOI : 10.1128/MCB.01372-09

T. Chang, D. Yu, Y. Lee, E. Wentzel, D. Arking et al., Widespread microRNA repression by Myc contributes to tumorigenesis, Nature Genetics, vol.121, issue.1, pp.43-50, 2008.
DOI : 10.1038/ng.2007.30

P. Tate and A. Bird, Effects of DNA methylation on DNA-binding proteins and gene expression, Current Opinion in Genetics & Development, vol.3, issue.2, pp.226-231, 1993.
DOI : 10.1016/0959-437X(93)90027-M

Y. Saito and P. Jones, Epigenetic Activation of Tumor Suppressor MicroRNAs in Human Cancer Cells, Cell Cycle, vol.5, issue.19, pp.2220-2222, 2006.
DOI : 10.4161/cc.5.19.3340

Y. Saito, G. Liang, G. Egger, J. Friedman, J. Chuang et al., Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells, Cancer Cell, vol.9, issue.6, pp.435-443, 2006.
DOI : 10.1016/j.ccr.2006.04.020

A. Lujambio, S. Ropero, E. Ballestar, M. Fraga, C. Cerrato et al., Genetic Unmasking of an Epigenetically Silenced microRNA in Human Cancer Cells, Cancer Research, vol.67, issue.4, pp.1424-1429, 2007.
DOI : 10.1158/0008-5472.CAN-06-4218

D. Lodygin, V. Tarasov, A. Epanchintsev, C. Berking, T. Knyazeva et al., Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer . Cell Cycle, pp.2591-2600, 2008.

B. Brueckner, C. Stresemann, R. Kuner, C. Mund, T. Musch et al., The Human let-7a-3 Locus Contains an Epigenetically Regulated MicroRNA Gene with Oncogenic Function, Cancer Research, vol.67, issue.4, pp.1419-1423, 2007.
DOI : 10.1158/0008-5472.CAN-06-4074

Y. Gao, Y. He, J. Ding, K. Wu, B. Hu et al., An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1?? 3' untranslated region confers risk for hepatocellular carcinoma, Carcinogenesis, vol.30, issue.12, pp.2064-2069, 2009.
DOI : 10.1093/carcin/bgp283

A. Wiestner, M. Tehrani, M. Chiorazzi, G. Wright, F. Gibellini et al., Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival, Blood, vol.109, issue.11, pp.4599-4606, 2007.
DOI : 10.1182/blood-2006-08-039859

R. Chen, L. Bemis, C. Amato, H. Myint, H. Tran et al., Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma, Blood, vol.112, issue.3, pp.822-829, 2008.
DOI : 10.1182/blood-2008-03-142182

C. Mayr, M. Hemann, and D. Bartel, Disrupting the Pairing Between let-7 and Hmga2 Enhances Oncogenic Transformation, Science, vol.315, issue.5818, pp.1576-1579, 2007.
DOI : 10.1126/science.1137999

V. Sarhadi, H. Wikman, K. Salmenkivi, E. Kuosma, T. Sioris et al., Increased expression of high mobility group A proteins in lung cancer, The Journal of Pathology, vol.91, issue.2, pp.206-212, 2006.
DOI : 10.1002/path.1960

B. Meyer, S. Loeschke, A. Schultze, T. Weigel, M. Sandkamp et al., HMGA2 overexpression in non-small cell lung cancer, Molecular Carcinogenesis, vol.88, issue.7, pp.503-511, 2007.
DOI : 10.1002/mc.20235

D. Cello, F. Hillion, J. Hristov, A. Wood, L. Mukherjee et al., HMGA2 Participates in Transformation in Human Lung Cancer, Molecular Cancer Research, vol.6, issue.5, pp.743-750, 2008.
DOI : 10.1158/1541-7786.MCR-07-0095

N. Abe, T. Watanabe, Y. Suzuki, N. Matsumoto, T. Masaki et al., An increased high-mobility group A2 expression level is associated with malignant phenotype in pancreatic exocrine tissue, British Journal of Cancer, vol.89, issue.11, pp.2104-2109, 2003.
DOI : 10.1038/sj.bjc.6601391

K. To, Z. Zhan, T. Litman, and S. Bates, Regulation of ABCG2 Expression at the 3' Untranslated Region of Its mRNA through Modulation of Transcript Stability and Protein Translation by a Putative MicroRNA in the S1 Colon Cancer Cell Line, Molecular and Cellular Biology, vol.28, issue.17, pp.5147-61, 2008.
DOI : 10.1128/MCB.00331-08

Z. Yu, Z. Li, N. Jolicoeur, L. Zhang, Y. Fortin et al., Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers, Nucleic Acids Research, vol.35, issue.13, pp.4535-4541, 2007.
DOI : 10.1093/nar/gkm480

H. He, K. Jazdzewski, W. Li, S. Liyanarachchi, R. Nagy et al., The role of microRNA genes in papillary thyroid carcinoma, Proceedings of the National Academy of Sciences, vol.102, issue.52, pp.19075-19080, 2005.
DOI : 10.1073/pnas.0509603102

D. Landi, F. Gemignani, A. Naccarati, B. Pardini, P. Vodicka et al., Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer, Carcinogenesis, vol.29, issue.3, pp.579-584, 2008.
DOI : 10.1093/carcin/bgm304

L. Chin, E. Ratner, S. Leng, R. Zhai, S. Nallur et al., A SNP in a let-7 microRNA Complementary Site in the KRAS 3' Untranslated Region Increases Non-Small Cell Lung Cancer Risk, Cancer Research, vol.68, issue.20, pp.8535-8540, 2008.
DOI : 10.1158/0008-5472.CAN-08-2129

T. Paranjape, H. Heneghan, R. Lindner, F. Keane, A. Hoffman et al., A 3???-untranslated region KRAS variant and triple-negative breast cancer: a case-control and genetic analysis, The Lancet Oncology, vol.12, issue.4, pp.377-86, 2011.
DOI : 10.1016/S1470-2045(11)70044-4

A. Brendle, H. Lei, A. Brandt, R. Johansson, K. Enquist et al., Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker, Carcinogenesis, vol.29, issue.7, pp.1394-1399, 2008.
DOI : 10.1093/carcin/bgn126

P. Voorhoeve, C. Le-sage, M. Schrier, A. Gillis, H. Stoop et al., A Genetic Screen Implicates miRNA-372 and miRNA-373 As Oncogenes in Testicular Germ Cell Tumors, Cell, vol.124, issue.6, pp.1169-1181, 2006.
DOI : 10.1016/j.cell.2006.02.037

Y. Hayashita, H. Osada, Y. Tatematsu, H. Yamada, K. Yanagisawa et al., A Polycistronic MicroRNA Cluster, miR-17-92, Is Overexpressed in Human Lung Cancers and Enhances Cell Proliferation, Cancer Research, vol.65, issue.21, pp.9628-9632, 2005.
DOI : 10.1158/0008-5472.CAN-05-2352

L. He, J. Thomson, M. Hemann, E. Hernando-monge, D. Mu et al., A microRNA polycistron as a potential human oncogene, Nature, vol.1, issue.7043, pp.828-833, 2005.
DOI : 10.1093/BIOINFORMATICS/16.11.1046

W. Tam, S. Hughes, W. Hayward, and P. Besmer, Avian bic, a Gene Isolated from a Common Retroviral Site in Avian Leukosis Virus-Induced Lymphomas That Encodes a Noncoding RNA, Cooperates with c-myc in Lymphomagenesis and Erythroleukemogenesis, Journal of Virology, vol.76, issue.9, pp.4275-4286, 2002.
DOI : 10.1128/JVI.76.9.4275-4286.2002

P. Eis, W. Tam, L. Sun, A. Chadburn, Z. Li et al., Accumulation of miR-155 and BIC RNA in human B cell lymphomas, Proceedings of the National Academy of Sciences, vol.102, issue.10, pp.3627-3632, 2005.
DOI : 10.1073/pnas.0500613102

J. Kluiver, S. Poppema, D. De-jong, T. Blokzijl, G. Harms et al., BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas, The Journal of Pathology, vol.159, issue.2, pp.243-249, 2005.
DOI : 10.1002/path.1825

S. Costinean, N. Zanesi, Y. Pekarsky, E. Tili, S. Volinia et al., Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E??-miR155 transgenic mice, Proceedings of the National Academy of Sciences, vol.103, issue.18, pp.7024-7029, 2003.
DOI : 10.1073/pnas.0602266103

G. Mudduluru, F. Medved, R. Grobholz, C. Jost, A. Gruber et al., Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer, Cancer, vol.17, issue.8, pp.1697-1707, 2007.
DOI : 10.1002/cncr.22983

S. Zhu, M. Si, H. Wu, and Y. Mo, MicroRNA-21 Targets the Tumor Suppressor Gene Tropomyosin 1 (TPM1), Journal of Biological Chemistry, vol.282, issue.19, pp.14328-14336, 2007.
DOI : 10.1074/jbc.M611393200

I. Asangani, S. Rasheed, D. Nikolova, J. Leupold, N. Colburn et al., MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer, Oncogene, vol.62, issue.15, pp.2128-2136, 2008.
DOI : 10.1074/jbc.M611393200

M. Iorio, M. Ferracin, C. Liu, A. Veronese, R. Spizzo et al., MicroRNA Gene Expression Deregulation in Human Breast Cancer, Cancer Research, vol.65, issue.16, pp.7065-7070, 2005.
DOI : 10.1158/0008-5472.CAN-05-1783

S. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis et al., RAS Is Regulated by the let-7 MicroRNA Family, Cell, vol.120, issue.5, pp.635-647, 2005.
DOI : 10.1016/j.cell.2005.01.014

Y. Akao, Y. Nakagawa, and T. Naoe, let-7 MicroRNA Functions as a Potential Growth Suppressor in Human Colon Cancer Cells, Biological & Pharmaceutical Bulletin, vol.29, issue.5, pp.903-906, 2006.
DOI : 10.1248/bpb.29.903

Y. Lee and A. Dutta, The tumor suppressor microRNA let-7 represses the HMGA2 oncogene, Genes & Development, vol.21, issue.9, pp.1025-1030, 2007.
DOI : 10.1101/gad.1540407

V. Sampson, N. Rong, J. Han, Q. Yang, V. Aris et al., MicroRNA Let-7a Down-regulates MYC and Reverts MYC-Induced Growth in Burkitt Lymphoma Cells, Cancer Research, vol.67, issue.20, pp.9762-9770, 2007.
DOI : 10.1158/0008-5472.CAN-07-2462

J. Dong, Chromosomal deletions and tumor suppressor genes in prostate cancer, Cancer Metastasis Rev, vol.20, pp.173-193, 2001.
DOI : 10.1007/0-306-48143-X_4

G. Calin, A. Cimmino, M. Fabbri, M. Ferracin, S. Wojcik et al., MiR-15a and miR-16-1 cluster functions in human leukemia, Proceedings of the National Academy of Sciences, vol.105, issue.13, pp.5166-5171, 2008.
DOI : 10.1073/pnas.0800121105

M. Nasser, J. Datta, G. Nuovo, H. Kutay, T. Motiwala et al., Down-regulation of Micro-RNA-1 (miR-1) in Lung Cancer: SUPPRESSION OF TUMORIGENIC PROPERTY OF LUNG CANCER CELLS AND THEIR SENSITIZATION TO DOXORUBICIN-INDUCED APOPTOSIS BY miR-1, Journal of Biological Chemistry, vol.283, issue.48, pp.33394-33405, 2008.
DOI : 10.1074/jbc.M804788200

S. Reddy, K. Ohshiro, S. Rayala, and R. Kumar, MicroRNA-7, a Homeobox D10 Target, Inhibits p21-Activated Kinase 1 and Regulates Its Functions, Cancer Research, vol.68, issue.20, pp.8195-8200, 2008.
DOI : 10.1158/0008-5472.CAN-08-2103

F. Guessous, Y. Zhang, A. Kofman, A. Catania, Y. Li et al., microRNA-34a is tumor suppressive in brain tumors and glioma stem cells, Cell Cycle, vol.9, issue.6
DOI : 10.4161/cc.9.6.10987

K. Cole, E. Attiyeh, Y. Mosse, M. Laquaglia, S. Diskin et al., A Functional Screen Identifies miR-34a as a Candidate Neuroblastoma Tumor Suppressor Gene, Molecular Cancer Research, vol.6, issue.5, pp.735-777, 2008.
DOI : 10.1158/1541-7786.MCR-07-2102

Q. Jiang, Y. Wang, Y. Hao, L. Juan, M. Teng et al., miR2Disease: a manually curated database for microRNA deregulation in human disease, Nucleic Acids Research, vol.37, issue.Database, pp.98-104, 2009.
DOI : 10.1093/nar/gkn714

F. Igney and P. Krammer, DEATH AND ANTI-DEATH: TUMOUR RESISTANCE TO APOPTOSIS, Nature Reviews Cancer, vol.2, issue.4, pp.277-288, 2002.
DOI : 10.1038/nrc776

J. Bush and G. Li, The role of Bcl-2 family members in the progression of cutaneous melanoma, Clinical and Experimental Metastasis, vol.20, issue.6, pp.531-539, 2003.
DOI : 10.1023/A:1025874502181

L. Coultas and A. Strasser, The role of the Bcl-2 protein family in cancer, Seminars in Cancer Biology, vol.13, issue.2, pp.115-123, 2003.
DOI : 10.1016/S1044-579X(02)00129-3

J. Reed, J. Jurgensmeier, and S. Matsuyama, Bcl-2 family proteins and mitochondria, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1366, issue.1-2, pp.127-137, 1998.
DOI : 10.1016/S0005-2728(98)00108-X

J. Henry-mowatt, C. Dive, J. Martinou, and D. James, Role of mitochondrial membrane permeabilization in apoptosis and cancer, Oncogene, vol.23, issue.16, pp.2850-2860, 2004.
DOI : 10.1038/sj.onc.1207534

P. Li, D. Nijhawan, I. Budihardjo, S. Srinivasula, M. Ahmad et al., Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade, Cell, vol.91, issue.4, pp.479-489, 1997.
DOI : 10.1016/S0092-8674(00)80434-1

C. Du, M. Fang, Y. Li, L. Li, and X. Wang, Smac, a Mitochondrial Protein that Promotes Cytochrome c???Dependent Caspase Activation by Eliminating IAP Inhibition, Cell, vol.102, issue.1, pp.33-42, 2000.
DOI : 10.1016/S0092-8674(00)00008-8

A. Verhagen, P. Ekert, M. Pakusch, J. Silke, L. Connolly et al., Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins, Cell, vol.102, issue.1, pp.43-53, 2000.
DOI : 10.1016/S0092-8674(00)00009-X

A. Chinnaiyan, . Rourke-'k, M. Tewari, and V. Dixit, FADD, a novel death domain-containing protein, interacts with the death domain of fas and initiates apoptosis, Cell, vol.81, issue.4
DOI : 10.1016/0092-8674(95)90071-3

R. Eskes, S. Desagher, B. Antonsson, and J. Martinou, Bid Induces the Oligomerization and Insertion of Bax into the Outer Mitochondrial Membrane, Molecular and Cellular Biology, vol.20, issue.3, pp.929-935, 2000.
DOI : 10.1128/MCB.20.3.929-935.2000

A. Vecchione and C. Croce, Apoptomirs: small molecules have gained the license to kill, Endocrine Related Cancer, vol.17, issue.1, pp.37-50, 2010.
DOI : 10.1677/ERC-09-0163

A. Cimmino, G. Calin, M. Fabbri, M. Iorio, M. Ferracin et al., miR-15 and miR-16 induce apoptosis by targeting BCL2, Proceedings of the National Academy of Sciences, vol.102, issue.39, pp.13944-13949, 2005.
DOI : 10.1073/pnas.0506654102

A. Ventura, A. Young, M. Winslow, L. Lintault, A. Meissner et al., Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17???92 Family of miRNA Clusters, Cell, vol.132, issue.5, pp.875-886, 2008.
DOI : 10.1016/j.cell.2008.02.019

S. Ambs, R. Prueitt, M. Yi, R. Hudson, T. Howe et al., Genomic Profiling of MicroRNA and Messenger RNA Reveals Deregulated MicroRNA Expression in Prostate Cancer, Cancer Research, vol.68, issue.15, pp.6162-6170, 2008.
DOI : 10.1158/0008-5472.CAN-08-0144

F. Petrocca, R. Visone, M. Onelli, M. Shah, M. Nicoloso et al., E2F1-Regulated MicroRNAs Impair TGF??-Dependent Cell-Cycle Arrest and Apoptosis in Gastric Cancer, Cancer Cell, vol.13, issue.3, pp.272-286, 2008.
DOI : 10.1016/j.ccr.2008.02.013

M. Yamakuchi, M. Ferlito, and C. Lowenstein, miR-34a repression of SIRT1 regulates apoptosis, Proceedings of the National Academy of Sciences, vol.105, issue.36, pp.13421-13426, 2008.
DOI : 10.1073/pnas.0801613105

C. Zhang, J. Zhang, A. Zhang, Z. Shi, L. Han et al., MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma, Molecular Cancer, vol.9, issue.1, pp.229-229, 2010.
DOI : 10.1186/1476-4598-9-229

C. Le-sage, R. Nagel, D. Egan, M. Schrier, E. Mesman et al., Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation, The EMBO Journal, vol.103, issue.15, pp.3699-3708, 2007.
DOI : 10.1038/sj.emboj.7601790

C. Xu, Y. Lu, Z. Pan, W. Chu, X. Luo et al., The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes, Journal of Cell Science, vol.120, issue.17, pp.3045-3052, 2007.
DOI : 10.1242/jcs.010728

J. Chan, A. Krichevsky, and K. Kosik, MicroRNA-21 Is an Antiapoptotic Factor in Human Glioblastoma Cells, Cancer Research, vol.65, issue.14, pp.6029-6033, 2005.
DOI : 10.1158/0008-5472.CAN-05-0137

T. Papagiannakopoulos, A. Shapiro, and K. Kosik, MicroRNA-21 Targets a Network of Key Tumor-Suppressive Pathways in Glioblastoma Cells, Cancer Research, vol.68, issue.19, pp.8164-8172, 2008.
DOI : 10.1158/0008-5472.CAN-08-1305

N. Bitomsky, N. Wethkamp, R. Marikkannu, and K. Klempnauer, siRNA-mediated knockdown of Pdcd4 expression causes upregulation of p21

D. Sayed, M. He, C. Hong, S. Gao, S. Rane et al., MicroRNA-21 Is a Downstream Effector of AKT That Mediates Its Antiapoptotic Effects via Suppression of Fas Ligand, Journal of Biological Chemistry, vol.285, issue.26, pp.20281-20290, 2010.
DOI : 10.1074/jbc.M110.109207

D. Ovcharenko, K. Kelnar, C. Johnson, N. Leng, and D. Brown, Genome-Scale MicroRNA and Small Interfering RNA Screens Identify Small RNA Modulators of TRAIL-Induced Apoptosis Pathway, Cancer Research, vol.67, issue.22, pp.10782-10788, 2007.
DOI : 10.1158/0008-5472.CAN-07-1484

C. Fischer, M. Schneider, and P. Carmeliet, Principles and Therapeutic Implications of Angiogenesis, Vasculogenesis and Arteriogenesis, Handb Exp Pharmacol, pp.157-212, 2006.
DOI : 10.1007/3-540-36028-X_6

D. Sullivan and R. Bicknell, New molecular pathways in angiogenesis, British Journal of Cancer, vol.89, issue.2, pp.228-259, 2003.
DOI : 10.1038/sj.bjc.6601107

A. Kuehbacher, C. Urbich, A. Zeiher, and S. Dimmeler, Role of Dicer and Drosha for Endothelial MicroRNA Expression and Angiogenesis, Circulation Research, vol.101, issue.1, pp.59-68, 2007.
DOI : 10.1161/CIRCRESAHA.107.153916

S. Wang and E. Olson, AngiomiRs???Key regulators of angiogenesis, Current Opinion in Genetics & Development, vol.19, issue.3, pp.205-211, 2009.
DOI : 10.1016/j.gde.2009.04.002

S. Wang, A. Aurora, B. Johnson, X. Qi, J. Mcanally et al., The Endothelial-Specific MicroRNA miR-126 Governs Vascular Integrity and Angiogenesis, Developmental Cell, vol.15, issue.2, pp.261-271, 2008.
DOI : 10.1016/j.devcel.2008.07.002

J. Fish, M. Santoro, S. Morton, S. Yu, R. Yeh et al., miR-126 Regulates Angiogenic Signaling and Vascular Integrity, Developmental Cell, vol.15, issue.2, pp.272-84, 2008.
DOI : 10.1016/j.devcel.2008.07.008

I. Nikolic, K. Plate, and M. Schmidt, EGFL7 meets miRNA-126: an angiogenesis alliance, Journal of Angiogenesis Research, vol.2, issue.1, pp.9-2010
DOI : 10.1186/2040-2384-2-9

D. Lee, Z. Deng, C. Wang, B. T. Yang, B. Tannous et al., MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression, Proceedings of the National Academy of Sciences, vol.104, issue.51, pp.20350-20355, 2007.
DOI : 10.1073/pnas.0706901104

M. Dews, A. Homayouni, D. Yu, D. Murphy, C. Sevignani et al., Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster, Nature Genetics, vol.265, issue.9, pp.1060-1065, 2006.
DOI : 10.1056/NEJMoa032691

P. Fasanaro, D. Alessandra-'y, V. Stefano, R. Melchionna, S. Romani et al., MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3, Journal of Biological Chemistry, vol.283, issue.23, pp.15878-15883, 2008.
DOI : 10.1074/jbc.M800731200

Y. Chen and D. Gorski, Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5, Blood, vol.111, issue.3, pp.1217-1226, 2008.
DOI : 10.1182/blood-2007-07-104133

L. Poliseno, A. Tuccoli, L. Mariani, M. Evangelista, L. Citti et al., MicroRNAs modulate the angiogenic properties of HUVECs, Blood, vol.108, issue.9, pp.3068-3071, 2006.
DOI : 10.1182/blood-2006-01-012369

Z. Hua, Q. Lv, W. Ye, C. Wong, G. Cai et al., MiRNA-Directed Regulation of VEGF and Other Angiogenic Factors under Hypoxia, PLoS ONE, vol.32, issue.1, pp.116-116, 2006.
DOI : 10.1371/journal.pone.0000116.s002

H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J. Lee et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nature Cell Biology, vol.175, issue.6, pp.654-663, 2007.
DOI : 10.1002/pmic.200400876

N. Kosaka, H. Iguchi, and T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis, Cancer Science, vol.10, issue.10, pp.2087-2092, 2010.
DOI : 10.1111/j.1349-7006.2010.01650.x

C. Thery, L. Duban, E. Segura, P. Veron, O. Lantz et al., Indirect activation of na??ve CD4+ T cells by dendritic cell???derived exosomes, Nature Immunology, vol.3, issue.12, pp.1156-62, 2002.
DOI : 10.1038/ni854

S. Keller, M. Sanderson, A. Stoeck, and P. Altevogt, Exosomes: From biogenesis and secretion to biological function, Immunology Letters, vol.107, issue.2, pp.102-108, 2006.
DOI : 10.1016/j.imlet.2006.09.005

J. Skog, T. Wurdinger, S. Van-rijn, D. Meijer, L. Gainche et al., Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nature Cell Biology, vol.94, issue.12, pp.1470-1476, 2008.
DOI : 10.1371/journal.pone.0000571

M. Hunter, N. Ismail, X. Zhang, B. Aguda, E. Lee et al., Detection of microRNA Expression in Human Peripheral Blood Microvesicles, PLoS ONE, vol.15, issue.11, pp.3694-2008
DOI : 10.1371/journal.pone.0003694.s003

M. Caby, D. Lankar, C. Vincendeau-scherrer, G. Raposo, and C. Bonnerot, Exosomal-like vesicles are present in human blood plasma, International Immunology, vol.17, issue.7, pp.879-887, 2005.
DOI : 10.1093/intimm/dxh267

G. Rabinowits, C. Gercel-taylor, J. Day, D. Taylor, and G. Kloecker, Exosomal MicroRNA: A Diagnostic Marker for Lung Cancer, Clinical Lung Cancer, vol.10, issue.1, pp.42-48, 2009.
DOI : 10.3816/CLC.2009.n.006

D. Taylor, C. Gercel-taylor, and L. Parker, Patient-derived tumor-reactive antibodies as diagnostic markers for ovarian cancer, Gynecologic Oncology, vol.115, issue.1, pp.112-132, 2009.
DOI : 10.1016/j.ygyno.2009.06.031

T. Pisitkun, R. Shen, and M. Knepper, Identification and proteomic profiling of exosomes in human urine, Proceedings of the National Academy of Sciences, vol.101, issue.36, pp.13368-73, 2004.
DOI : 10.1073/pnas.0403453101

P. Gonzales, T. Pisitkun, J. Hoffert, D. Tchapyjnikov, R. Star et al., Large-Scale Proteomics and Phosphoproteomics of Urinary Exosomes, Journal of the American Society of Nephrology, vol.20, issue.2, pp.363-379, 2009.
DOI : 10.1681/ASN.2008040406

A. Michael, S. Bajracharya, P. Yuen, H. Zhou, R. Star et al., Exosomes from human saliva as a source of microRNA biomarkers, Oral Diseases, vol.74, issue.Pt. 19, pp.34-42, 2010.
DOI : 10.1111/j.1601-0825.2009.01604.x

V. Palanisamy, S. Sharma, A. Deshpande, H. Zhou, J. Gimzewski et al., Nanostructural and Transcriptomic Analyses of Human Saliva Derived Exosomes, PLoS ONE, vol.64, issue.19, pp.8577-8577, 2010.
DOI : 10.1371/journal.pone.0008577.s002

S. Keller, C. Rupp, A. Stoeck, S. Runz, M. Fogel et al., CD24 is a marker of exosomes secreted into urine and amniotic fluid, Kidney International, vol.72, issue.9, pp.1095-102, 2007.
DOI : 10.1038/sj.ki.5002486

K. Ohshima, K. Inoue, A. Fujiwara, K. Hatakeyama, K. Kanto et al., Let-7 MicroRNA Family Is Selectively Secreted into the Extracellular Environment via Exosomes in a Metastatic Gastric Cancer Cell Line, PLoS ONE, vol.21, issue.10, pp.13247-2010
DOI : 10.1371/journal.pone.0013247.t001

T. Chen, R. Lai, M. Lee, A. Choo, C. Lee et al., Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs, Nucleic Acids Research, vol.38, issue.1, pp.215-239, 2010.
DOI : 10.1093/nar/gkp857

D. Taylor and C. Gercel-taylor, MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer, Gynecologic Oncology, vol.110, issue.1, pp.13-21, 2008.
DOI : 10.1016/j.ygyno.2008.04.033

B. Lehmann, M. Paine, A. Brooks, J. Mccubrey, R. Renegar et al., Senescence-Associated Exosome Release from Human Prostate Cancer Cells, Cancer Research, vol.68, issue.19
DOI : 10.1158/0008-5472.CAN-07-6538

M. Katakowski, B. Buller, X. Wang, T. Rogers, and M. Chopp, Functional MicroRNA Is Transferred between Glioma Cells, Cancer Research, vol.70, issue.21, pp.8259-63, 2010.
DOI : 10.1158/0008-5472.CAN-10-0604

F. Collino, M. Deregibus, S. Bruno, L. Sterpone, G. Aghemo et al., Microvesicles Derived from Adult Human Bone Marrow and Tissue Specific Mesenchymal Stem Cells Shuttle Selected Pattern of miRNAs, PLoS ONE, vol.44, issue.7, pp.11803-2010
DOI : 10.1371/journal.pone.0011803.s004

C. Grange, M. Tapparo, F. Collino, L. Vitillo, C. Damasco et al., Microvesicles Released from Human Renal Cancer Stem Cells Stimulate Angiogenesis and Formation of Lung Premetastatic Niche, Cancer Research, vol.71, issue.15, pp.5346-56, 2011.
DOI : 10.1158/0008-5472.CAN-11-0241

B. Purow, The elephant in the room: do microRNA-based therapies have a realistic chance of succeeding for brain tumors such as glioblastoma?, Journal of Neuro-Oncology, vol.435, issue.3, pp.429-465, 2011.
DOI : 10.1007/s11060-010-0449-5

P. Lammers and A. Bader, The Therapeutic Potential of microRNAs . Innovations in Pharmaceutical Technology, pp.52-55, 2011.

A. Bader, D. Brown, J. Stoudemire, and P. Lammers, Developing therapeutic microRNAs for cancer, Gene Therapy, vol.180, issue.12, 2011.
DOI : 10.1038/nature08956

P. Trang, P. Medina, J. Wiggins, L. Ruffino, K. Kelnar et al., Regression of murine lung tumors by the let-7 microRNA, Oncogene, vol.6, issue.11, pp.1580-1587, 2010.
DOI : 10.1016/j.cell.2007.10.054

Q. Ji, X. Hao, Y. Meng, M. Zhang, J. Desano et al., Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres, BMC Cancer, vol.36, issue.Suppl 1, pp.266-266, 2008.
DOI : 10.1046/j.1365-2184.36.s.1.6.x

C. Esau, Inhibition of microRNA with antisense oligonucleotides, Methods, vol.44, issue.1, pp.55-60, 2008.
DOI : 10.1016/j.ymeth.2007.11.001

R. Lanford, E. Hildebrandt-eriksen, A. Petri, R. Persson, M. Lindow et al., Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection, Science, vol.327, issue.5962, pp.198-201, 2010.
DOI : 10.1126/science.1178178