A. Miller, B. Hoogstraten, M. Staquet, and A. Winkler, Reporting results of cancer treatment, Cancer, vol.11, issue.1, pp.207-214, 1981.
DOI : 10.1002/1097-0142(19810101)47:1<207::AID-CNCR2820470134>3.0.CO;2-6

E. Eisenhauer, P. Therasse, J. Bogaerts, L. Schwartz, D. Sargent et al., New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1), European Journal of Cancer, vol.45, issue.2, pp.228-247, 2009.
DOI : 10.1016/j.ejca.2008.10.026

E. Gehan, The determination of the number of patients required in a preliminary and a follow-up trial of a new chemotherapeutic agent, Journal of Chronic Diseases, vol.13, issue.4, pp.346-353, 1961.
DOI : 10.1016/0021-9681(61)90060-1

T. Fleming, One-Sample Multiple Testing Procedure for Phase II Clinical Trials, Biometrics, vol.38, issue.1, pp.143-151, 1982.
DOI : 10.2307/2530297

M. Chang, T. Therneau, H. Wieand, and S. Cha, Designs for Group Sequential Phase II Clinical Trials, Biometrics, vol.43, issue.4, pp.865-874, 1987.
DOI : 10.2307/2531540

R. Simon, Optimal two-stage designs for phase II clinical trials, Controlled Clinical Trials, vol.10, issue.1, pp.1-10, 1989.
DOI : 10.1016/0197-2456(89)90015-9

H. Guo and A. Liu, A Simple and Efficient Bias-Reduced Estimator of Response Probability Following a Group Sequential Phase II Trial, Journal of Biopharmaceutical Statistics, vol.15, issue.5, pp.773-781, 2005.
DOI : 10.1081/BIP-200067771

A. Liu, C. Wu, K. Yu, and E. Gehan, Supplementary analysis of probabilities at the termination of a group sequential phase II trial, Statistics in Medicine, vol.7, issue.7, pp.1009-1027, 2005.
DOI : 10.1002/sim.1990

M. Chang, H. Wieand, and V. Chang, The bias of the sample proportion following a group sequential phase II clinical trial, Statistics in Medicine, vol.75, issue.5, pp.563-570, 1989.
DOI : 10.1002/sim.4780080505

S. Jung and K. Kim, On the estimation of the binomial probability in multistage clinical trials, Statistics in Medicine, vol.73, issue.6, pp.881-896, 2004.
DOI : 10.1002/sim.1653

T. Koyama and H. Chen, Proper inference from Simon's two???stage designs, Statistics in Medicine, vol.15, issue.5, pp.3145-3154, 2008.
DOI : 10.1002/sim.3123

W. Tsai, C. Y. Chen, and C. , Interval estimation of binomial proportion in clinical trials with a two-stage design, Statistics in Medicine, vol.16, issue.1, pp.15-35, 2008.
DOI : 10.1002/sim.2930

M. Pepe, Z. Feng, G. Longton, and J. Koopmeiners, Conditional estimation of sensitivity and specificity from a phase 2 biomarker study allowing early termination for futility, Statistics in Medicine, vol.45, issue.5, pp.762-779, 2009.
DOI : 10.1006/cbmr.1993.1004

Q. Li, An MSE-reduced estimator for the response proportion in a two-stage clinical trial, Pharmaceutical Statistics, vol.27, issue.3, pp.277-279, 2011.
DOI : 10.1002/pst.414

S. Green and S. Dahlberg, Planned versus attained design in phase II clinical trials, Statistics in Medicine, vol.71, issue.7, pp.853-862, 1992.
DOI : 10.1002/sim.4780110703

A. Banerjee and A. Tsiatis, Adaptive two-stage designs in phase II clinical trials, Statistics in Medicine, vol.5, issue.19, pp.3382-3395, 2006.
DOI : 10.1002/sim.2501

S. Englert and M. Kieser, Adaptive designs for single-arm phase II trials in oncology, Pharmaceutical Statistics, vol.27, issue.3, pp.241-249
DOI : 10.1002/pst.541

S. Jung, T. Lee, K. Kim, and S. George, Admissible two-stage designs for phase II cancer clinical trials, Statistics in Medicine, vol.35, issue.4, pp.561-569, 2004.
DOI : 10.1002/sim.1600

J. Whitehead, On the bias of maximum likelihood estimation following a sequential test, Biometrika, vol.73, issue.3, pp.573-581, 1986.
DOI : 10.1093/biomet/73.3.573

C. Jennison and B. Turnbull, Group Sequential Methods with Applications to Clinical Trials, Boca Raton, 2000.

P. Armitage, NUMERICAL STUDIES IN THE SEQUENTIAL ESTIMATION OF A BINOMIAL PARAMETER, Biometrika, vol.45, issue.1-2, pp.1-15, 1958.
DOI : 10.1093/biomet/45.1-2.1

C. Jennison and B. Turnbull, Confidence Intervals for a Binomial Parameter Following a Multistage Test With Application to MIL-STD 105D and Medical Trials, Technometrics, vol.65, issue.1, pp.49-58, 1983.
DOI : 10.1080/00401706.1983.10487819

S. Jung, K. Owzar, S. George, and T. Lee, -Value Calculation for Multistage Phase II Cancer Clinical Trials, Journal of Biopharmaceutical Statistics, vol.82, issue.6, pp.765-775, 2006.
DOI : 10.1093/biomet/73.3.573

URL : https://hal.archives-ouvertes.fr/hal-00957043

C. Clopper and E. Pearson, THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL, Biometrika, vol.26, issue.4, pp.404-413, 1934.
DOI : 10.1093/biomet/26.4.404

R. Newcombe, Two-sided confidence intervals for the single proportion: comparison of seven methods, Statistics in Medicine, vol.17, issue.8, pp.857-872, 1998.
DOI : 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E

J. Neyman, On the Problem of Confidence Intervals, The Annals of Mathematical Statistics, vol.6, issue.3, pp.111-116, 1935.
DOI : 10.1214/aoms/1177732585

C. Mehta and S. Walsh, Comparison of exact, mid-p, and Mantel-Haenszel confidence intervals for the common odds ratio across several 2×2 contingency tables, Am Statist, vol.46, issue.2, pp.146-150, 1992.

R. Development and C. Team, R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2011.

L. Brown, T. Cai, and A. Dasgupta, Interval estimation for a binomial proportion, Stat Sci, vol.16, issue.2, pp.101-117, 2001.

S. Pocock and M. Hughes, Practical problems in interim analyses, with particular regard to estimation, Controlled Clinical Trials, vol.10, issue.4, pp.209-221, 1989.
DOI : 10.1016/0197-2456(89)90059-7

B. Freidlin and E. Korn, Stopping clinical trials early for benefit: impact on estimation, Clinical Trials, vol.6, issue.2, pp.119-125, 2009.
DOI : 10.1177/1740774509102310

O. Strickland, P. Casella, and G. , Conditional Inference Following Group Sequential Testing, Biometrical Journal, vol.45, issue.5, pp.515-526, 2003.
DOI : 10.1002/bimj.200390029

G. Jovic and J. Whitehead, An exact method for analysis following a two-stage phase II cancer clinical trial, Statistics in Medicine, vol.52, issue.30, pp.3118-3125, 2010.
DOI : 10.1002/sim.3837

J. Shuster, Optimal two-stage designs for single arm Phase II cancer trials, Journal of Biopharmaceutical Statistics, vol.35, issue.1, pp.39-51, 2002.
DOI : 10.1081/BIP-120005739