C. Missiuna and H. Polatajko, Developmental Dyspraxia by Any Other Name: Are They All Just Clumsy Children?, American Journal of Occupational Therapy, vol.49, issue.7, pp.620-627, 1995.
DOI : 10.5014/ajot.49.7.619

D. Hoare, Subtypes of Developmental Coordination Disorder Adapted Phys Act Quaterly, pp.158-169, 1994.

H. Polatajko, M. Fox, and C. Missiuna, An International Consensus on Children with Developmental Coordination Disorder, Canadian Journal of Occupational Therapy, vol.62, issue.1, pp.3-6, 1995.
DOI : 10.1177/000841749506200101

J. Macnab, L. Miller, and H. Polatajko, The search for subtypes of DCD : Is cluster analysis the answer? Human Movement Sci, pp.49-72, 2001.

H. Wright and D. Sugden, The nature of developmental coordination disorder: inter-and intragroup differences Adapted Phys Activities Quarterly, pp.357-371, 1996.

D. Dewey and B. Kaplan, Subtyping of developmental motor deficits, Developmental Neuropsychology, vol.34, issue.3, pp.265-284, 1994.
DOI : 10.2307/2282967

M. Miyahara, Subtypes of Students with Learning Disabilities Based upon Gross Motor Functions, Adapted Physical Activity Quarterly, vol.11, issue.4, pp.368-382, 1994.
DOI : 10.1123/apaq.11.4.368

H. Lyytinen and T. Ahonen, Developmental motor problems in children: a 6-year longitudinal study, J Clin Exp Neuropsychology, vol.10, p.57, 1988.

P. Wilson, Practitioner Review: Approaches to assessment and treatment of children with DCD: an evaluative review, Journal of Child Psychology and Psychiatry, vol.11, issue.8, pp.46806-823, 2005.
DOI : 10.1093/cercor/13.4.392

L. Vaivre-douret, C. Lalanne, I. Ingster-moati, N. Boddaert, D. Cabrol et al., Subtypes of Developmental Coordination Disorder: Research on Their Nature and Etiology, Developmental Neuropsychology, vol.13, issue.5, pp.614-643, 2011.
DOI : 10.1016/S0167-9457(98)00013-X

A. Cutler, D. Cutler, and J. Stevens, Tree-based methods In High-Dimensional Data Analysis in Cancer Research, pp.83-101, 2009.

L. Breiman, Bagging predictors, Machine Learning, vol.10, issue.2, pp.123-140, 1996.
DOI : 10.1007/BF00058655

G. Musumarra, V. Barresi, D. Condorelli, and C. Fortuna, Potentialities of multivariate approaches in genome-based cancer research: identification of candidate genes for new diagnostics by PLS discriminant analysis, Journal of Chemometrics, vol.18, issue.34, pp.125-132, 2004.
DOI : 10.1002/cem.846

M. Pérez-enciso and M. Tenenhaus, Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach, Human Genet, vol.112, pp.5-6581, 2003.

G. Palermo, P. Piraino, and H. Zucht, Performance of PLS regression coefficients in selecting variables for each response of a multivariate PLS for omics-type data, Advances and Applications in Bioinformatics and Chemistry, vol.2, pp.57-70, 2009.
DOI : 10.2147/AABC.S3619

S. Wold, M. Sjöströmsj¨sjöstrsjöstr¨sjöström, and L. Eriksson, PLS-regression: a basic tool of chemometrics, Chemometrics and Intelligent Laboratory Systems, vol.58, issue.2, pp.109-130, 2001.
DOI : 10.1016/S0169-7439(01)00155-1

J. Gauchi and P. Chagnon, Comparison of selection methods of explanatory variables in PLS regression with application to manufacturing process data, Chemometrics and Intelligent Laboratory Systems, vol.58, issue.2, pp.171-193, 2001.
DOI : 10.1016/S0169-7439(01)00158-7

B. Alsberg, D. Kell, and R. Goodacre, Variable Selection in Discriminant Partial Least-Squares Analysis, Analytical Chemistry, vol.70, issue.19, pp.4126-4133, 1998.
DOI : 10.1021/ac980506o

L. Lêcaoka, Integration and variable selection of 'omics' data sets with PLS: a survey, pp.77-96

A. Hoerl and R. Kennard, Ridge Regression: Applications to Nonorthogonal Problems, Technometrics, vol.3, issue.1, pp.69-82, 1970.
DOI : 10.2307/1266192

H. Zou and T. Hastie, Regression and variable selection via the elastic net, JRStatSoc:SerB2005, pp.301-320

H. Chun and K. , Sparse partial least squares regression for simultaneous dimension reduction and variable selection, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.15, issue.1, pp.3-25, 2010.
DOI : 10.1111/j.1467-9868.2009.00723.x

S. De-jong, SIMPLS: An alternative approach to partial least squares regression, Chemometrics and Intelligent Laboratory Systems, vol.18, issue.3, pp.251-263, 1993.
DOI : 10.1016/0169-7439(93)85002-X

L. Cao, K. Rossouw, D. Robert-granié, C. Besse, and P. , A sparse PLS for variable selection when integrating omics data, Stat Appl Genet Mol Biol, vol.7, p.35, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00300204

H. Wold, Estimation of Principal Components and Related Models by Iterative Least Squares, 1966.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Feature Extraction: Foundations And Applications, 2006.
DOI : 10.1007/978-3-540-35488-8

H. Schwender, K. Ickstadt, and J. Rahnenführerrahnenf¨rahnenführer, Classification with High-Dimensional Genetic Data: Assigning Patients and Genetic Features to Known Classes, Biometrical Journal, vol.50, issue.Suppl 1, pp.911-926, 2008.
DOI : 10.1002/bimj.200810475

L. Robert-graniéc, K. Cao, and M. Sancristobal, Predicting qualitative phenotypes from microarray data ??? the Eadgene pig data set, BMC Proceedings, vol.3, issue.Suppl 4, p.13, 2009.
DOI : 10.1073/pnas.082099299

L. Vaivre-douret, Batterie d' ´ evaluation des fonctions neuro-psychomotrices (NP-MOT) de l' ´ enfant [Tests battery of neuro-psychomotor functions in children, 2006.

R. Rosipal, K. Gunn, S. Shawe-taylor, and J. , Overview and recent advances in partial least squares In Subspace, Latent Structure and Feature Selection Techniques, pp.34-51, 2006.

T. Hothorn, F. Leisch, A. Zeileis, and K. Hornik, The Design and Analysis of Benchmark Experiments, Journal of Computational and Graphical Statistics, vol.14, issue.3, pp.675-699, 2005.
DOI : 10.1198/106186005X59630

L. Kaufman and P. Rousseeuw, Finding groups in data: an introduction to cluster analysis: Wiley Online Library, 1990.
DOI : 10.1002/9780470316801

C. Hennig, Cluster-wise assessment of cluster stability, Computational Statistics & Data Analysis, vol.52, issue.1, pp.258-271, 2007.
DOI : 10.1016/j.csda.2006.11.025

R. Development and C. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing

M. Kuhn, Building Predictive Models in R Using the caret Package, J Stat Software, vol.28, issue.5, 2008.

R. Díaz-uriarte, A. De-andrés, and S. , Gene selection and classification of microarray data using random forest, BMC Bioinf, vol.7, issue.3, 2006.

M. Ojala and G. Garriga, Permutation Tests for Studying Classifier Performance, 2009 Ninth IEEE International Conference on Data Mining, pp.1833-1863, 2010.
DOI : 10.1109/ICDM.2009.108

L. Han, M. Embrechts, B. Szymanski, K. Sternickel, and A. Ross, Random Forests Feature Selection with Kernel Partial Least Squares: Detecting Ischemia from MagnetoCardiograms, Proceedings of the European Symposium on Artificial Neural Networks, pp.221-226, 2006.

I. Alvarez and P. Padilla, Computer aided diagnosis system for the Alzheimer's disease based on partial least squares and random forest SPECT image classification, Neurosci Lett, vol.472, pp.99-103, 2010.

B. Menze, B. Kelm, R. Masuch, U. Himmelreich, P. Bachert et al., A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data, BMC Bioinformatics, vol.10, issue.1, p.213, 2009.
DOI : 10.1186/1471-2105-10-213

I. Ruczinski and C. Kooperberg, Exploring interactions in high-dimensional genomic data: an overview of Logic Regression, with applications, Journal of Multivariate Analysis, vol.90, issue.1, pp.178-195, 2004.
DOI : 10.1016/j.jmva.2004.02.010

B. Wolf, E. Slate, and E. Hill, Logic Forest: an ensemble classifier for discovering logical combinations of binary markers, Bioinformatics, vol.26, issue.17, pp.2183-2189, 2010.
DOI : 10.1093/bioinformatics/btq354

H. Schwender and K. Ickstadt, Identification of SNP interactions using logic regression, Biostatistics, vol.9, issue.1, pp.187-198, 2007.
DOI : 10.1093/biostatistics/kxm024

L. Cao, K. Boitard, S. Besse, and P. , Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems, BMC Bioinformatics, vol.12, issue.1, p.253, 2011.
DOI : 10.1111/j.1541-0420.2008.01017.x

URL : https://hal.archives-ouvertes.fr/hal-00959981