S. A. Bustin, Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems, Journal of Molecular Endocrinology, vol.29, issue.1, 2002.
DOI : 10.1677/jme.0.0290023

J. Peccoud and C. Jacob, Theoretical uncertainty of measurements using quantitative polymerase chain reaction, Biophysical Journal, vol.71, issue.1, pp.101-108, 1996.
DOI : 10.1016/S0006-3495(96)79205-6

O. Nordga?rdnordga?rd, J. T. Kvaloy, R. K. Farmen, and R. Heikkila, Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: The balance between accuracy and precision, Analytical Biochemistry, vol.356, issue.2, pp.182-193, 2006.
DOI : 10.1016/j.ab.2006.06.020

M. Bengtsson, M. Hemberg, P. Rorsman, and A. Sta?hlbergsta?hlberg, Quantification of mRNA in single cells and modelling of RT-qPCR induced noise, BMC Molecular Biology, vol.9, issue.1, p.63, 2008.
DOI : 10.1186/1471-2199-9-63

B. Calippe, V. Douin-echinard, M. Laffargue, H. Laurell, V. Rana-poussine et al., Chronic Estradiol Administration In Vivo Promotes the Proinflammatory Response of Macrophages to TLR4 Activation: Involvement of the Phosphatidylinositol 3-Kinase Pathway, The Journal of Immunology, vol.180, issue.12, pp.7980-7988, 2008.
DOI : 10.4049/jimmunol.180.12.7980

URL : https://hal.archives-ouvertes.fr/hal-00321739

J. R. Hofstetter, A. Zhang, A. R. Mayeda, T. Guscar, J. I. Nurnberger et al., Genomic DNA from Mice: A Comparison of Recovery Methods and Tissue Sources, Biochemical and Molecular Medicine, vol.62, issue.2, pp.197-202, 1997.
DOI : 10.1006/bmme.1997.2637

S. L. Spurgeon, R. C. Jones, and R. Ramakrishnan, High Throughput Gene Expression Measurement with Real Time PCR in a Microfluidic Dynamic Array, PLoS ONE, vol.25, issue.5, p.1662, 2008.
DOI : 10.1371/journal.pone.0001662.s006

E. Riant, A. Waget, H. Cogo, J. F. Arnal, R. Burcelin et al., Estrogens Protect against High-Fat Diet-Induced Insulin Resistance and Glucose Intolerance in Mice, Endocrinology, vol.150, issue.5, pp.2109-2117, 2009.
DOI : 10.1210/en.2008-0971

URL : https://hal.archives-ouvertes.fr/inserm-00410271

A. Giulietti, L. Overbergh, D. Valckx, B. Decallonne, R. Bouillon et al., An Overview of Real-Time Quantitative PCR: Applications to Quantify Cytokine Gene Expression, Methods, vol.25, issue.4, pp.386-401, 2001.
DOI : 10.1006/meth.2001.1261

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2, pp.402-408, 2001.

S. A. Bustin and T. Nolan, Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction, J. Biomol. Tech, vol.15, pp.155-166, 2004.

T. Nolan, R. E. Hands, and S. A. Bustin, Quantification of mRNA using real-time RT-PCR, Nature Protocols, vol.113, issue.3, pp.1559-1582, 2006.
DOI : 10.1038/nprot.2006.236

R. Higuchi, C. Fockler, G. Dollinger, and R. Watson, Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions, Bio/Technology, vol.85, issue.9, pp.1026-1030, 1993.
DOI : 10.1016/1050-3862(92)90051-6

U. E. Gibson, C. A. Heid, and P. M. Williams, A novel method for real time quantitative RT-PCR., Genome Research, vol.6, issue.10, pp.995-1001, 1996.
DOI : 10.1101/gr.6.10.995

M. W. Pfaffl, The ongoing evolution of qPCR, Methods, vol.50, issue.4, pp.215-216, 2010.
DOI : 10.1016/j.ymeth.2010.02.005

S. W. Roy and W. Gilbert, The evolution of spliceosomal introns: patterns, puzzles and progress, Nat. Rev. Genet, vol.7, pp.211-221, 2006.

S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett et al., The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments, Clinical Chemistry, vol.55, issue.4, pp.611-622, 2009.
DOI : 10.1373/clinchem.2008.112797

J. J. Yun, L. E. Heisler, I. I. Hwang, O. Wilkins, S. K. Lau et al., Genomic DNA functions as a universal external standard in quantitative real-time PCR, Nucleic Acids Research, vol.34, issue.12, p.85, 2006.
DOI : 10.1093/nar/gkl400

URL : http://doi.org/10.1093/nar/gkl400

M. Kubista, R. Sindelka, A. Tichopad, A. Bergkvist, D. Lindh et al., The Prime Technique. Real-time PCR data analysis, GIT Lab. J, pp.9-10, 2007.

M. W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Research, vol.29, issue.9, p.45, 2001.
DOI : 10.1093/nar/29.9.e45

D. W. Tholen, M. Kroll, J. R. Astles, A. L. Caffo, T. M. Happe et al., Evaluation of the Linearity of Quantitative Measurement Procedures: a Statistical Approach, Approved Guideline, vol.23, pp.1-60, 2003.

J. Vandesompele, K. De-preter, F. Pattyn, B. Poppe, N. Van-roy et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

C. L. Andersen, J. L. Jensen, and T. F. Orntoft, Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets, Cancer Research, vol.64, issue.15, pp.5245-5250, 2004.
DOI : 10.1158/0008-5472.CAN-04-0496

J. Hellemans, G. Mortier, A. De-paepe, F. Speleman, and J. Vandesompele, qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data, Genome Biology, vol.8, issue.2, p.19, 2007.
DOI : 10.1186/gb-2007-8-2-r19

Y. J. Liu, D. Zheng, S. Balasubramanian, N. Carriero, E. Khurana et al., Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity, BMC Genomics, vol.10, issue.1, p.480, 2009.
DOI : 10.1186/1471-2164-10-480