K. Albus, A. Wahab, and U. Heinemann, Standard antiepileptic drugs fail to block epileptiform activity in rat organotypic hippocampal slice cultures, British Journal of Pharmacology, vol.122, issue.Part 5, pp.709-724, 2008.
DOI : 10.1038/bjp.2008.112

E. Asano, O. Muzik, A. Shah, C. Juhasz, D. C. Chugani et al., Quantitative Interictal Subdural EEG Analyses in Children with Neocortical???Epilepsy, Epilepsia, vol.7, issue.suppl 1, pp.425-434, 2003.
DOI : 10.1046/j.1528-1157.2003.38902.x

M. Avoli, G. Biagini, and M. De-curtis, Do Interictal Spikes Sustain Seizures and Epileptogenesis? Epilepsy Curr, pp.203-207, 2006.

M. Avoli and M. De-curtis, GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity, Progress in Neurobiology, vol.95, issue.2, pp.104-132, 2011.
DOI : 10.1016/j.pneurobio.2011.07.003

J. Bancaud and J. Talairach, Methodology of stereo EEG exploration and surgical intervention in epilepsy], Rev Otoneuroophtalmol, vol.45, pp.315-328, 1973.

M. I. Banks, J. A. White, and R. A. Pearce, Interactions between Distinct GABAA Circuits in Hippocampus, Neuron, vol.25, issue.2, pp.449-457, 2000.
DOI : 10.1016/S0896-6273(00)80907-1

F. Bartolomei, P. Chauvel, and F. Wendling, Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG, Brain, vol.131, issue.7, pp.1818-1830, 2008.
DOI : 10.1093/brain/awn111

URL : https://hal.archives-ouvertes.fr/inserm-00291170

C. Bernard, M. Esclapez, J. C. Hirsch, and Y. Ben-ari, Interneurones are not so dormant in temporal lobe epilepsy: a critical reappraisal of the dormant basket cell hypothesis, Epilepsy Research, vol.32, issue.1-2, pp.93-103, 1998.
DOI : 10.1016/S0920-1211(98)00043-6

URL : https://hal.archives-ouvertes.fr/inserm-00487318

V. Bouilleret, V. Ridoux, A. Depaulis, C. Marescaux, A. Nehlig et al., Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy, Neuroscience, vol.89, issue.3, pp.717-729, 1999.
DOI : 10.1016/S0306-4522(98)00401-1

A. Bragin, J. Engel, . Jr, C. L. Wilson, I. Fried et al., High-frequency oscillations in human brain, Hippocampus, vol.15, issue.2, pp.137-142, 1999.
DOI : 10.1002/(SICI)1098-1063(1999)9:2<137::AID-HIPO5>3.0.CO;2-0

A. Bragin, J. Engel, . Jr, C. L. Wilson, I. Fried et al., Hippocampal and Entorhinal Cortex High-Frequency Oscillations (100-500 Hz) in Human Epileptic Brain and in Kainic Acid-Treated Rats with Chronic Seizures, Epilepsia, vol.37, issue.2, pp.127-137, 1999.
DOI : 10.1016/0920-1211(89)90030-2

I. Cohen, V. Navarro, S. Clemenceau, M. Baulac, and R. Miles, On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro, Science, vol.298, issue.5597, pp.1418-1421, 2002.
DOI : 10.1126/science.1076510

S. Coombes, Large-scale neural dynamics: Simple and complex, NeuroImage, vol.52, issue.3, pp.731-739, 2010.
DOI : 10.1016/j.neuroimage.2010.01.045

URL : http://eprints.nottingham.ac.uk/1221/1/Largescale_preprint.pdf

R. Cossart, C. Dinocourt, J. C. Hirsch, A. Merchan-perez, J. De-felipe et al., Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy, Nat Neurosci, vol.4, pp.52-62, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00484880

G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston, The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields, PLoS Computational Biology, vol.355, issue.2, 2008.
DOI : 10.1371/journal.pcbi.1000092.t001

S. Demont-guignard, P. Benquet, U. Gerber, A. Biraben, B. Martin et al., Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes, Annals of Neurology, vol.554, issue.pt 12, 2011.
DOI : 10.1002/ana.22610

URL : https://hal.archives-ouvertes.fr/inserm-00700398

S. Demont-guignard, P. Benquet, U. Gerber, and F. Wendling, Analysis of Intracerebral EEG Recordings of Epileptic Spikes: Insights From a Neural Network Model, IEEE Transactions on Biomedical Engineering, vol.56, issue.12, pp.2782-2795, 2009.
DOI : 10.1109/TBME.2009.2028015

URL : https://hal.archives-ouvertes.fr/inserm-00426352

J. Dyhrfjeld-johnsen, V. Santhakumar, R. J. Morgan, R. Huerta, L. Tsimring et al., Topological Determinants of Epileptogenesis in Large-Scale Structural and Functional Models of the Dentate Gyrus Derived From Experimental Data, Journal of Neurophysiology, vol.97, issue.2, pp.1566-1587, 2007.
DOI : 10.1152/jn.00950.2006

R. S. Fisher, W. R. Webber, R. P. Lesser, S. Arroyo, and S. Uematsu, High-frequency EEG activity at the start of seizures, J Clin Neurophysiol, vol.9, pp.441-448, 1992.

W. J. Freeman, A model of the olfactory system, Neural modeling, pp.41-62, 1973.

W. J. Freeman, Models of the dynamics of neural populations, Electroencephalogr Clin Neurophysiol, pp.9-18, 1978.

B. H. Gahwiler, M. Capogna, D. Debanne, R. A. Mckinney, and S. M. Thompson, Organotypic slice cultures: a technique has come of age, Trends in Neurosciences, vol.20, issue.10, pp.471-477, 1997.
DOI : 10.1016/S0166-2236(97)01122-3

D. B. Geselowitz, On Bioelectric Potentials in an Inhomogeneous Volume Conductor, Biophysical Journal, vol.7, issue.1, pp.1-11, 1967.
DOI : 10.1016/S0006-3495(67)86571-8

V. Gnatkovsky, L. Librizzi, F. Trombin, and M. De-curtis, Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro, Annals of Neurology, vol.61, issue.6, pp.674-686, 2008.
DOI : 10.1002/ana.21519

M. Hajos, W. E. Hoffmann, G. Orban, T. Kiss, and P. Erdi, Modulation of septo-hippocampal ?? activity by GABAA receptors: an experimental and computational approach, Neuroscience, vol.126, issue.3, pp.599-610, 2004.
DOI : 10.1016/j.neuroscience.2004.03.043

D. A. Hoffman, J. C. Magee, C. M. Colbert, and D. Johnston, K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons, Nature, vol.387, pp.869-875, 1997.

A. Hufnagel, M. Dumpelmann, J. Zentner, O. Schijns, and C. E. Elger, Clinical Relevance of Quantified Intracranial Interictal Spike Activity in Presurgical Evaluation of Epilepsy, Epilepsia, vol.39, issue.4, pp.467-478, 2000.
DOI : 10.1002/ana.410340513

C. Huneau, S. Demont-guignard, P. Benquet, B. Martin, and F. Wendling, Timedomain features of epileptic spikes as potential bio-markers of the epileptogenesis process, Conf Proc IEEE Eng Med Biol Soc, pp.6007-6010, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00540502

J. M. Ibarz, G. Foffani, E. Cid, M. Inostroza, and L. Menendez-de-la-prida, Emergent Dynamics of Fast Ripples in the Epileptic Hippocampus, Journal of Neuroscience, vol.30, issue.48, pp.16249-16261, 2010.
DOI : 10.1523/JNEUROSCI.3357-10.2010

J. Jacobs, P. Levan, C. E. Chatillon, A. Olivier, F. Dubeau et al., High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type, Brain, vol.132, issue.4, pp.1022-1037, 2009.
DOI : 10.1093/brain/awn351

J. Jacobs, M. Zijlmans, R. Zelmann, C. E. Chatillon, J. Hall et al., High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery, Annals of Neurology, vol.50, issue.pt 4, pp.209-220, 2010.
DOI : 10.1002/ana.21847

T. Klausberger and P. Somogyi, Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations, Science, vol.321, issue.5885, pp.53-57, 2008.
DOI : 10.1126/science.1149381

E. Labyt, P. Frogerais, L. Uva, J. J. Bellanger, and F. Wendling, Modeling of Entorhinal Cortex and Simulation of Epileptic Activity: Insights Into the Role of Inhibition-Related Parameters, IEEE Transactions on Information Technology in Biomedicine, vol.11, issue.4, pp.450-461, 2007.
DOI : 10.1109/TITB.2006.889680

URL : https://hal.archives-ouvertes.fr/inserm-00183634

B. Lancaster and P. R. Adams, Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons, J Neurophysiol, vol.55, pp.1268-1282, 1986.

B. Lancaster and R. A. Nicoll, Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones., The Journal of Physiology, vol.389, issue.1, pp.187-203, 1987.
DOI : 10.1113/jphysiol.1987.sp016653

F. H. Lopes-da-silva, A. Hoeks, H. Smits, and L. H. Zetterberg, Model of brain rhythmic activity, Kybernetik, vol.1, issue.1, pp.27-37, 1974.
DOI : 10.1007/BF00270757

W. W. Lytton, Computer modelling of epilepsy, Nature Reviews Neuroscience, vol.23, issue.8, pp.626-637, 2008.
DOI : 10.1038/nrn2416

E. D. Marsh, B. Peltzer, M. W. Brown, C. Wusthoff, P. B. Storm et al., Interictal EEG spikes identify the region of electrographic seizure onset in some, but not all, pediatric epilepsy patients, Epilepsia, vol.37, issue.4, pp.592-601, 2010.
DOI : 10.1111/j.1528-1167.2009.02306.x

M. L. Mayer and G. L. Westbrook, A voltage-clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones., The Journal of Physiology, vol.340, issue.1, pp.19-45, 1983.
DOI : 10.1113/jphysiol.1983.sp014747

B. Molaee-ardekani, P. Benquet, F. Bartolomei, and F. Wendling, Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: From ???altered structure??? to ???dysfunction???, NeuroImage, vol.52, issue.3, pp.1109-1122, 2010.
DOI : 10.1016/j.neuroimage.2009.12.049

URL : https://hal.archives-ouvertes.fr/inserm-00443065

B. Molaee-ardekani, P. Benquet, F. Bartolomei, and F. Wendling, Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: From ???altered structure??? to ???dysfunction???, NeuroImage, vol.52, issue.3, pp.1109-1122, 2010.
DOI : 10.1016/j.neuroimage.2009.12.049

URL : https://hal.archives-ouvertes.fr/inserm-00443065

S. Murakami and Y. Okada, Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals, The Journal of Physiology, vol.20, issue.3, pp.925-936, 2006.
DOI : 10.1113/jphysiol.2006.105379

P. F. Pinsky and J. Rinzel, Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons, Journal of Computational Neuroscience, vol.76, issue.1-2, pp.39-60, 1994.
DOI : 10.1007/BF00962717

E. Rodin, T. Constantino, S. Rampp, and P. K. Wong, Spikes and Epilepsy, Clinical EEG and Neuroscience, vol.119, issue.4, pp.288-299, 2009.
DOI : 10.1016/0013-4694(75)90056-5

I. Soltesz and K. J. Staley, Computational Neuroscience in Epilepsy, 2008.

K. J. Staley, A. White, and F. E. Dudek, Interictal spikes: Harbingers or causes of epilepsy?, Neuroscience Letters, vol.497, issue.3, pp.247-250, 2011.
DOI : 10.1016/j.neulet.2011.03.070

H. Stefan, F. H. Lopes-da-silva, W. Loscher, D. Schmidt, E. Perucca et al., Epileptogenesis and rational therapeutic strategies, Acta Neurologica Scandinavica, vol.41, issue.7, pp.139-155, 2006.
DOI : 10.1111/j.1528-1167.2005.54904.x

URL : https://biblio.ugent.be/doc/api

P. Suffczynski, S. Kalitzin, G. Pfurtscheller, and F. H. Lopes-da-silva, Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention, International Journal of Psychophysiology, vol.43, issue.1, pp.25-40, 2001.
DOI : 10.1016/S0167-8760(01)00177-5

P. Suffczynski, F. Wendling, J. Bellanger, and F. H. Da-silva, Some Insights Into Computational Models of (Patho)physiological Brain Activity, Proceedings of the IEEE, pp.784-804, 2006.
DOI : 10.1109/JPROC.2006.871773

F. Suzuki, M. P. Junier, D. Guilhem, J. C. Sorensen, and B. Onteniente, Morphogenetic effect of kainate on adult hippocampal neurons associated with a prolonged expression of brain-derived neurotrophic factor, Neuroscience, vol.64, issue.3, pp.665-674, 1995.
DOI : 10.1016/0306-4522(94)00463-F

J. Talairach and J. Bancaud, Lesion, "Irritative" Zone and Epileptogenic Focus, Stereotactic and Functional Neurosurgery, vol.27, issue.1-3, pp.91-94, 1966.
DOI : 10.1159/000103937

A. L. Taylor, J. M. Goaillard, and E. Marder, How Multiple Conductances Determine Electrophysiological Properties in a Multicompartment Model, Journal of Neuroscience, vol.29, issue.17, pp.5573-5586, 2009.
DOI : 10.1523/JNEUROSCI.4438-08.2009

S. Thompson, X. Cai, C. Dinocourt, and M. Nestor, The Use of Brain Slice Cultures for the Study of Epilepsy, Models of Seizures and Epilepsy, 2005.
DOI : 10.1016/B978-012088554-1/50007-4

R. D. Traub, Neocortical pyramidal cells: a model with dendritic calcium conductance reproduces repetitive firing and epileptic behavior, Brain Research, vol.173, issue.2, pp.243-257, 1979.
DOI : 10.1016/0006-8993(79)90625-5

G. Ullah and S. Schiff, Models of epilepsy, Scholarpedia, vol.4, issue.7, p.1409, 2009.
DOI : 10.4249/scholarpedia.1409

A. Van-rotterdam, F. H. Lopes-da-silva, J. Van-den-ende, M. A. Viergever, and A. J. Hermans, A model of the spatial-temporal characteristics of the alpha rhythm, Bulletin of Mathematical Biology, vol.31, issue.No. 1, pp.283-305, 1982.
DOI : 10.1007/BF02463252

F. Wendling, Computational models of epileptic activity: a bridge between observation and pathophysiological interpretation, Expert Review of Neurotherapeutics, vol.8, issue.6, pp.889-896, 2008.
DOI : 10.1586/14737175.8.6.889

URL : https://hal.archives-ouvertes.fr/inserm-00285570

F. Wendling, F. Bartolomei, J. J. Bellanger, J. Bourien, and P. Chauvel, Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset, Brain, vol.126, issue.6, pp.1449-1459, 2003.
DOI : 10.1093/brain/awg144

URL : https://hal.archives-ouvertes.fr/inserm-00149231

F. Wendling, F. Bartolomei, J. J. Bellanger, and P. Chauvel, Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition, European Journal of Neuroscience, vol.38, issue.9, pp.1499-1508, 2002.
DOI : 10.1007/s004220050191

F. Wendling and P. Chauvel, Transition to Ictal Activity in Temporal Lobe Epilepsy, Computational Neuroscience in Epilepsy, pp.356-386, 2008.
DOI : 10.1016/B978-012373649-9.50026-0

F. Wendling and P. Chauvel, Transition to Ictal Activity in Temporal Lobe Epilepsy, Computational Neuroscience in Epilepsy, 2008.
DOI : 10.1016/B978-012373649-9.50026-0

F. Wendling, A. Hernandez, J. J. Bellanger, P. Chauvel, and F. Bartolomei, Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG, J Clin Neurophysiol, vol.22, pp.343-356, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00147326

A. White, P. A. Williams, J. L. Hellier, S. Clark, E. Dudek et al., EEG spike activity precedes epilepsy after kainate-induced status epilepticus, Epilepsia, vol.113, issue.suppl 2, pp.371-383, 2010.
DOI : 10.1111/j.1528-1167.2009.02339.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906396

J. A. White, M. I. Banks, R. A. Pearce, and N. J. Kopell, Networks of interneurons with fast and slow gamma -aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm, Proceedings of the National Academy of Sciences, vol.97, issue.14, pp.8128-8133, 2000.
DOI : 10.1073/pnas.100124097

H. R. Wilson and J. D. Cowan, Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons, Biophysical Journal, vol.12, issue.1, pp.1-24, 1972.
DOI : 10.1016/S0006-3495(72)86068-5

G. Worrell and J. Gotman, High-frequency oscillations and other electrophysiological biomarkers of epilepsy: clinical studies, Biomarkers in Medicine, vol.5, issue.5, pp.557-566, 2011.
DOI : 10.2217/bmm.11.74

M. Zijlmans, P. Jiruska, R. Zelmann, F. Leijten, J. Jefferys et al., High-frequency oscillations as a new biomarker in epilepsy, Annals of Neurology, vol.66, issue.Suppl 5, 2011.
DOI : 10.1002/ana.22548