B. W. Mcmenamin, A. J. Shackman, L. L. Greischar, and R. J. Davidson, Electromyogenic artifacts and electroencephalographic inferences revisited, NeuroImage, vol.54, issue.1, pp.4-9, 2010.
DOI : 10.1016/j.neuroimage.2010.07.057

M. Congedo, C. Gouy-pailler, and C. Jutten, On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics, Clinical Neurophysiology, vol.119, issue.12, pp.2677-2686, 2008.
DOI : 10.1016/j.clinph.2008.09.007

URL : https://hal.archives-ouvertes.fr/hal-00343628

S. Vorobyov and A. Cichocki, Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis, Biological Cybernetics, vol.86, issue.4, pp.293-303, 2002.
DOI : 10.1007/s00422-001-0298-6

J. Iriarte, E. Urrestarazu, M. Valencia, M. Alegre, A. Malanda et al., Independent Component Analysis as a Tool to Eliminate Artifacts in EEG: A Quantitative Study, Journal of Clinical Neurophysiology, vol.20, issue.4, pp.249-257, 2003.
DOI : 10.1097/00004691-200307000-00004

J. Iriarte, E. Urrestarazu, J. Artieda, M. Valencia, P. Levan et al., Independent Component Analysis in the Study of Focal Seizures, Journal of Clinical Neurophysiology, vol.23, issue.6, pp.551-558, 2006.
DOI : 10.1097/01.wnp.0000236579.08698.23

P. Levan, E. Urrestarazu, and J. Gotman, A system for automatic artifact removal in ictal scalp EEG based on independent component analysis and Bayesian classification, Clinical Neurophysiology, vol.117, issue.4, pp.912-927, 2006.
DOI : 10.1016/j.clinph.2005.12.013

S. P. Fitzgibbon, D. M. Powers, K. J. Pope, and C. R. Clark, Removal of EEG Noise and Artifact Using Blind Source Separation, Journal of Clinical Neurophysiology, vol.24, issue.3, pp.232-243, 2007.
DOI : 10.1097/WNP.0b013e3180556926

A. Delorme, T. Sejnowski, and S. Makeig, Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis, NeuroImage, vol.34, issue.4, pp.1443-1449, 2007.
DOI : 10.1016/j.neuroimage.2006.11.004

URL : https://hal.archives-ouvertes.fr/hal-00135628

S. Halder, M. Bensch, J. Mellinger, M. Bogdan, A. Kubler et al., Online Artifact Removal for Brain-Computer Interfaces Using Support Vector Machines and Blind Source Separation, Computational Intelligence and Neuroscience, vol.64, issue.10, 2007.
DOI : 10.1097/00004691-200203000-00002

M. Crespo-garcia, M. Atienza, and J. L. Cantero, Muscle Artifact Removal from Human Sleep EEG by Using Independent Component Analysis, Annals of Biomedical Engineering, vol.2004, issue.8, pp.467-475, 2008.
DOI : 10.1007/s10439-008-9442-y

F. C. Viola, J. Thorne, B. Edmonds, T. Schneider, T. Eichele et al., Semi-automatic identification of independent components representing EEG artifact, Clinical Neurophysiology, vol.120, issue.5, pp.868-877, 2009.
DOI : 10.1016/j.clinph.2009.01.015

B. W. Mcmenamin, A. J. Shackman, J. S. Maxwell, D. R. Bachhuber, A. M. Koppenhaver et al., Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG, NeuroImage, vol.49, issue.3, pp.2416-2432, 2010.
DOI : 10.1016/j.neuroimage.2009.10.010

W. De-clercq, A. Vergult, B. Vanrumste, W. Van-paesschen, and S. Van-huffel, Canonical Correlation Analysis Applied to Remove Muscle Artifacts From the Electroencephalogram, IEEE Transactions on Biomedical Engineering, vol.53, issue.12, pp.2583-2587, 2006.
DOI : 10.1109/TBME.2006.879459

A. Vergult, W. De-clercq, A. Palmini, B. Vanrumste, P. Dupont et al., Improving the Interpretation of Ictal Scalp EEG: BSS?CCA Algorithm for Muscle Artifact Removal, Epilepsia, vol.42, issue.5, pp.950-958, 2007.
DOI : 10.1046/j.1528-1157.2002.37501.x

J. Gao, C. Zheng, and P. Wang, Online Removal of Muscle Artifact from Electroencephalogram Signals Based on Canonical Correlation Analysis, Clinical EEG and Neuroscience, vol.39, issue.1, pp.53-59, 2010.
DOI : 10.1162/neco.1995.7.6.1129

K. P. Indiradevi, E. Elias, P. S. Sathidevi, S. Dinesh-nayak, and K. Radhakrishnan, A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram, Computers in Biology and Medicine, vol.38, issue.7, pp.805-816, 2008.
DOI : 10.1016/j.compbiomed.2008.04.010

D. Iyer and G. Zouridakis, Single-trial evoked potential estimation: Comparison between independent component analysis and wavelet denoising, Clinical Neurophysiology, vol.118, issue.3, pp.495-504, 2007.
DOI : 10.1016/j.clinph.2006.10.024

M. Aminghafari, N. Cheze, and J. Poggi, Multivariate denoising using wavelets and principal component analysis, Computational Statistics & Data Analysis, vol.50, issue.9, pp.2381-2398, 2006.
DOI : 10.1016/j.csda.2004.12.010

E. Estrada, H. Nazeran, G. Sierra, F. Ebrahimi, and S. K. Setarehdan, Waveletbased EEG denoising for automatic sleep stage classification, 21st International Conference on Electrical Communications and Computers (CONIELECOMP) (, pp.295-298, 2011.

V. Krishnaveni, S. Jayaraman, L. Anitha, and K. Ramadoss, Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients, Journal of Neural Engineering, vol.3, issue.4, pp.338-346, 2006.
DOI : 10.1088/1741-2560/3/4/011

J. Gao, H. Sultan, J. Hu, and W. W. Tung, Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: a comparison, IEEE Signal Process. Lett, vol.17, issue.3, pp.237-240, 2010.

B. Mijovic, M. De-vos, I. Gligorijevic, J. Taelman, and S. Van-huffel, Source Separation From Single-Channel Recordings by Combining Empirical-Mode Decomposition and Independent Component Analysis, IEEE Transactions on Biomedical Engineering, vol.57, issue.9, pp.2188-2196, 2010.
DOI : 10.1109/TBME.2010.2051440

J. Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Physics in Medicine and Biology, vol.32, issue.1, pp.11-22, 1987.
DOI : 10.1088/0031-9155/32/1/004

J. Herault and C. Jutten, Space or time adaptative signal processing by neural networks models, Proceedings of the International Conferenceon Neural Networks for Computing, pp.206-211, 1986.

P. Comon, Independent component analysis: a new concept? Signal Process, pp.287-314, 1994.

A. Kachenoura, L. Albera, L. Senhadji, and P. Comon, Ica: a potential tool for bci systems, IEEE Signal Processing Magazine, vol.25, issue.1, pp.57-68, 2008.
DOI : 10.1109/MSP.2008.4408442

URL : https://hal.archives-ouvertes.fr/inserm-00202706

H. Hotelling, RELATIONS BETWEEN TWO SETS OF VARIATES, Biometrika, vol.28, issue.3-4, pp.321-377, 1936.
DOI : 10.1093/biomet/28.3-4.321

O. Friman, M. Borga, P. Lundberg, and H. Knutsson, Exploratory fMRI Analysis by Autocorrelation Maximization, NeuroImage, vol.16, issue.2, pp.454-464, 2002.
DOI : 10.1006/nimg.2002.1067

N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, pp.903-995, 1998.
DOI : 10.1098/rspa.1998.0193

H. Liang, Z. Lin, and R. W. Mccallum, Artifact reduction in electrogastrogram based on empirical mode decomposition method, Medical & Biological Engineering & Computing, vol.25, issue.1, pp.35-41, 2000.
DOI : 10.1007/BF02344686

G. Rilling, P. Flandrin, and P. Goncalves, Empirical mode decomposition, fractional Gaussian noise and Hurst exponent estimation, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.489-492, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00570581

R. M. Roark, Frequency and Voice: Perspectives in the Time Domain, Journal of Voice, vol.20, issue.3, pp.325-354, 2006.
DOI : 10.1016/j.jvoice.2005.12.009

J. C. Nunes, S. Guyot, and E. Delechelle, Texture analysis based on local analysis of the Bidimensional Empirical Mode Decomposition, Machine Vision and Applications, vol.13, issue.3, pp.177-188, 2005.
DOI : 10.1007/s00138-004-0170-5

URL : https://hal.archives-ouvertes.fr/inserm-00177472

J. Fleureau, J. C. Nunes, A. Kachenoura, L. Albera, and L. Senhadji, Turning Tangent Empirical Mode Decomposition: A Framework for Mono- and Multivariate Signals, IEEE Transactions on Signal Processing, vol.59, issue.3, pp.1309-1316, 2011.
DOI : 10.1109/TSP.2010.2097254

URL : https://hal.archives-ouvertes.fr/inserm-00550936

L. Senhadji, J. L. Dillenseger, F. Wendling, C. Rocha, and A. Kinie, Wavelet analysis of EEG for three-dimensional mapping of epileptic events, Annals of Biomedical Engineering, vol.11, issue.5, pp.543-552, 1995.
DOI : 10.1007/BF02584454

URL : https://hal.archives-ouvertes.fr/inserm-00130049

L. Senhadji, G. Carrault, J. J. Bellanger, and G. Passariello, Comparing wavelet transforms for recognizing cardiac patterns, IEEE Engineering in Medicine and Biology Magazine, vol.14, issue.2, pp.167-73, 1995.
DOI : 10.1109/51.376755

URL : https://hal.archives-ouvertes.fr/inserm-00152896

L. Senhadji and F. Wendling, Epileptic transient detection: wavelets and time-frequency approaches, Neurophysiologie Clinique/Clinical Neurophysiology, vol.32, issue.3, pp.175-192, 2002.
DOI : 10.1016/S0987-7053(02)00304-0

URL : https://hal.archives-ouvertes.fr/inserm-00130050

X. Li, X. Yao, J. Fox, and J. G. Jefferys, Interaction dynamics of neuronal oscillations analysed using wavelet transforms, Journal of Neuroscience Methods, vol.160, issue.1, pp.178-85, 2007.
DOI : 10.1016/j.jneumeth.2006.08.006

M. Jobert, C. Tismer, E. Poiseau, and H. Schulz, Wavelets-a new tool in sleep biosignal analysis, Journal of Sleep Research, vol.20, issue.7, pp.223-232, 1994.
DOI : 10.1111/j.1365-2869.1994.tb00135.x

R. W. Buccigrossi and E. P. Simoncelli, Image compression via joint statistical characterization in the wavelet domain, IEEE Transactions on Image Processing, vol.8, issue.12, pp.1688-1701, 1999.
DOI : 10.1109/83.806616

J. L. Starck and J. Bobin, Astronomical Data Analysis and Sparsity: From Wavelets to Compressed Sensing, Proceedings of the IEEE, vol.98, issue.6, pp.1021-1030, 2010.
DOI : 10.1109/JPROC.2009.2025663

S. Mallat, Zero-crossings of a wavelet transform, IEEE Transactions on Information Theory, vol.37, issue.4, pp.1019-1033, 1991.
DOI : 10.1109/18.86995

K. M. Chang, Arrhythmia ECG Noise Reduction by Ensemble Empirical Mode Decomposition, Sensors, vol.10, issue.6, pp.6063-6080, 2010.
DOI : 10.3390/s100606063

Z. K. Peng, P. W. Tse, and F. L. Chu, An improved Hilbert???Huang transform and its application in vibration signal analysis, Journal of Sound and Vibration, vol.286, issue.1-2, pp.187-205, 2005.
DOI : 10.1016/j.jsv.2004.10.005

A. O. Boudraa and J. C. Cexus, EMD-Based Signal Filtering, IEEE Transactions on Instrumentation and Measurement, vol.56, issue.6, pp.2196-2202, 2007.
DOI : 10.1109/TIM.2007.907967

URL : https://hal.archives-ouvertes.fr/hal-00518607

Y. Kopsinis and S. Mclaughlin, Development of EMD-Based Denoising Methods Inspired by Wavelet Thresholding, IEEE Transactions on Signal Processing, vol.57, issue.4, pp.1351-1362, 2009.
DOI : 10.1109/TSP.2009.2013885

A. O. Boudraa, J. C. Cexus, and Z. Saidi, EMD-based signal noise reduction, Int. J Signal Process, vol.1, pp.33-37, 2004.

D. L. Donoho, De-noising by soft-thresholding, IEEE Transactions on Information Theory, vol.41, issue.3, pp.613-627, 1995.
DOI : 10.1109/18.382009

Y. Kopsinis and S. Mclaughlin, Empirical mode decomposition based denoising techniques, 1st International Work-shop on Cognitive Information Processing (CIP), 2008.

D. L. Donoho and I. M. Johnstone, Adapting to Unknown Smoothness via Wavelet Shrinkage, Journal of the American Statistical Association, vol.31, issue.432, pp.1200-1224, 1995.
DOI : 10.1080/01621459.1979.10481038

D. Cosandier-rimele, J. M. Badier, P. Chauvel, and F. Wendling, A Physiologically Plausible Spatio-Temporal Model for EEG Signals Recorded With Intracerebral Electrodes in Human Partial Epilepsy, IEEE Transactions on Biomedical Engineering, vol.54, issue.3, pp.380-388, 2007.
DOI : 10.1109/TBME.2006.890489

URL : https://hal.archives-ouvertes.fr/inserm-00144531

D. Cosandier-rimele, I. Merlet, J. M. Badier, P. Chauvel, and F. Wendling, The neuronal sources of EEG: Modeling of simultaneous scalp and intracerebral recordings in epilepsy, NeuroImage, vol.42, issue.1, pp.135-146, 2008.
DOI : 10.1016/j.neuroimage.2008.04.185

URL : https://hal.archives-ouvertes.fr/inserm-00285582

D. Cosandier-rimele, I. Merlet, F. Bartolomei, J. M. Badier, and F. Wendling, Computational Modeling of Epileptic Activity: From Cortical Sources to EEG Signals, Journal of Clinical Neurophysiology, vol.27, issue.6, pp.465-470, 2010.
DOI : 10.1097/WNP.0b013e3182005dcd

URL : https://hal.archives-ouvertes.fr/hal-00909517

F. Wendling, J. J. Bellanger, F. Bartolomei, and P. , Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals, Biological Cybernetics, vol.83, issue.4, pp.367-378, 2000.
DOI : 10.1007/s004220000160

S. I. Goncalves, J. C. De-munck, J. P. Verbunt, F. Bijma, R. M. Heethaar et al., In vivo measurement of the brain and skull resistivities using an eit-based method and realistic models for the head, IEEE Transactions on Biomedical Engineering, vol.50, issue.6, pp.754-767, 2003.
DOI : 10.1109/TBME.2003.812164

G. Birot, L. Albera, F. Wendling, and I. Merlet, Localization of extended brain sources from EEG/MEG: The ExSo-MUSIC approach, NeuroImage, vol.56, issue.1, pp.102-113, 2011.
DOI : 10.1016/j.neuroimage.2011.01.054

URL : https://hal.archives-ouvertes.fr/inserm-00588305

H. Hallez, M. De-vos, B. Vanrumste, P. Van-hese, S. Assecondi et al., Removing muscle and eye artifacts using blind source separation techniques in ictal EEG source imaging, Clinical Neurophysiology, vol.120, issue.7, pp.1262-1272, 2009.
DOI : 10.1016/j.clinph.2009.05.010

F. Grouiller, L. Vercueil, A. Krainik, C. Segebarth, P. Kahane et al., A comparative study of different artefact removal algorithms for EEG signals acquired during functional MRI, NeuroImage, vol.38, issue.1, pp.124-13710, 2007.
DOI : 10.1016/j.neuroimage.2007.07.025

URL : https://hal.archives-ouvertes.fr/inserm-00381736