T. Adair, M. Wells, J. Hang, and J. Montani, A stereological method for estimating length density of the arterial vascular system, Am J Physiol, vol.266, pp.1434-1442, 1994.

J. Adam, H. Elleaume, L. Duc, G. Corde, S. Charvet et al., Absolute Cerebral Blood Volume and Blood Flow Measurements Based on Synchrotron Radiation Quantitative Computed Tomography, Journal of Cerebral Blood Flow & Metabolism, vol.23, issue.4, pp.499-512, 2003.
DOI : 10.1097/01.WCB.0000050063.57184.3C

J. Adam, C. Nemoz, A. Bravin, S. Fiedler, S. Bayat et al., High-Resolution Blood???Brain Barrier Permeability and Blood Volume Imaging Using Quantitative Synchrotron Radiation Computed Tomography: Study on an F98 Rat Brain Glioma, Journal of Cerebral Blood Flow & Metabolism, vol.10, issue.2, pp.145-53, 2005.
DOI : 10.1038/jcbfm.1983.1

URL : https://hal.archives-ouvertes.fr/inserm-00388911

H. Aronen, I. Gazit, D. Louis, B. Buchbinder, F. Pardo et al., Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings., Radiology, vol.191, issue.1, pp.41-51, 1994.
DOI : 10.1148/radiology.191.1.8134596

D. Bereczki, L. Wei, V. Acuff, K. Gruber, A. Tajima et al., Technique-dependent variations in cerebral microvessel blood volumes and hematocrits in the rat, J Appl Physiol, vol.73, pp.918-942, 1992.

H. Bernsen, P. Rijken, N. Hagemeier, and A. Van-der-kogel, A Quantitative Analysis of Vascularization and Perfusion of Human Glioma Xenografts at Different Implantation Sites, Microvascular Research, vol.57, issue.3, pp.244-57, 1999.
DOI : 10.1006/mvre.1999.2143

H. Bernsen, P. Rijken, T. Oostendorp, and A. Van-der-kogel, Vascularity and perfusion of human gliomas xenografted in the athymic nude mouse, British Journal of Cancer, vol.71, issue.4, pp.721-727, 1995.
DOI : 10.1038/bjc.1995.141

B. Deane and P. Lantos, The vasculature of experimental brain tumours, Journal of the Neurological Sciences, vol.49, issue.1, pp.67-77, 1981.
DOI : 10.1016/0022-510X(81)90189-1

J. Dennie, J. Mandeville, J. Boxerman, S. Packard, B. Rosen et al., NMR imaging of changes in vascular morphology due to tumor angiogenesis, Magnetic Resonance in Medicine, vol.48, issue.6, pp.793-802, 1998.
DOI : 10.1002/mrm.1910400602

K. Douma, M. Oostendorp, D. Slaaf, M. Post, W. Backes et al., Evaluation of magnetic resonance vessel size imaging by two-photon laser scanning microscopy, Magnetic Resonance in Medicine, vol.69, issue.pt 3, pp.930-939, 2010.
DOI : 10.1002/mrm.22248

J. Dunn, M. Roche, R. Springett, M. Abajian, J. Merlis et al., Monitoring angiogenesis in brain using steady-state quantification of ?R2 with MION infusion, Magnetic Resonance in Medicine, vol.59, issue.1, pp.55-61, 2004.
DOI : 10.1002/mrm.10660

C. Farrell, C. Farrell, P. Stewart, D. Maestro, R. Ellis et al., The Functional Microcirculation in a Glioma Model, International Journal of Radiation Biology, vol.53, issue.1-2, pp.131-138, 1991.
DOI : 10.1080/09553009114551711

H. Hawighorst, W. Weikel, P. Knapstein, M. Knopp, I. Zuna et al., Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome, Clin Cancer Res, vol.4, pp.2305-2317, 1998.

A. Hennig, [Errors in volume determination from area relation of thick sections (Holmes effect)], Mikroskopie, vol.25, pp.154-74, 1969.

A. Jain, Fundamentals of Digital Image Processing Determinants of tumor blood flow: a review, Cancer Res, vol.48, pp.2641-58, 1988.

R. Jain, Delivery of molecular and cellular medicine to solid tumors1PII of original article: S0169-409X(97)00027-6. The article was originally published in Advanced Drug Delivery Reviews 26 (1997) 71???90.1, Advanced Drug Delivery Reviews, vol.46, issue.1-3, pp.149-68, 2001.
DOI : 10.1016/S0169-409X(00)00131-9

C. Julien, J. Payen, I. Tropres, R. Farion, E. Grillon et al., Assessment of vascular reactivity in rat brain glioma by measuring regional blood volume during graded hypoxic hypoxia, British Journal of Cancer, vol.117, pp.374-80, 2004.
DOI : 10.1002/1522-2594(200103)45:3<397::AID-MRM1052>3.3.CO;2-V

C. Julien-dolbec, I. Tropres, O. Montigon, H. Reutenauer, A. Ziegler et al., Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain, British Journal of Anaesthesia, vol.89, issue.2, pp.287-93, 2002.
DOI : 10.1093/bja/aef182

H. Lahrech, A. Perles-barbacaru, S. Aous, L. Bas, J. Debouzy et al., Cerebral Blood Volume Quantification in a C6 Tumor Model Using Gadolinium per (3,6-Anhydro) ??-Cyclodextrin as a New Magnetic Resonance Imaging Preclinical Contrast Agent, Journal of Cerebral Blood Flow & Metabolism, vol.8, issue.5, pp.1017-1046, 2008.
DOI : 10.1002/mrm.1910360511

URL : https://hal.archives-ouvertes.fr/inserm-00381358

W. Lin, A. Celik, R. Paczynski, C. Hsu, and W. Powers, Quantitative Magnetic Resonance Imaging in Experimental Hypercapnia: Improvement in the Relation Between Changes in Brain R2* and the Oxygen Saturation of Venous Blood After Correction for Changes in Cerebral Blood Volume, Journal of Cerebral Blood Flow & Metabolism, vol.32, pp.853-62, 1999.
DOI : 10.1097/00004647-199908000-00004

W. Lin, R. Paczynski, K. Kuppusamy, C. Hsu, and E. Haacke, Quantitative measurements of regional cerebral blood volume using MRI in rats: Effects of arterial carbon dioxide tension and mannitol, Magnetic Resonance in Medicine, vol.59, issue.3, pp.420-428, 1997.
DOI : 10.1002/mrm.1910380311

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.62-68, 1979.
DOI : 10.1109/TSMC.1979.4310076

A. Pathak, S. Rand, and K. Schmainda, The effect of brain tumor angiogenesis on the in vivo relationship between the gradient-echo relaxation rate change (?R2*) and contrast agent (MION) dose, Journal of Magnetic Resonance Imaging, vol.46, issue.4, pp.397-403, 2003.
DOI : 10.1002/jmri.10371

A. Pathak, K. Schmainda, B. Ward, J. Linderman, K. Rebro et al., MR-derived cerebral blood volume maps: Issues regarding histological validation and assessment of tumor angiogenesis, Magnetic Resonance in Medicine, vol.58, issue.4, pp.735-782, 2001.
DOI : 10.1002/mrm.1252

J. Payen, E. Briot, I. Tropres, C. Julien-dolbec, O. Montigon et al., Regional cerebral blood volume response to hypocapnia using susceptibility contrast MRI, NMR in Biomedicine, vol.80, issue.7, pp.384-91, 2000.
DOI : 10.1002/1099-1492(200011)13:7<384::AID-NBM655>3.0.CO;2-V

A. Perles-barbacaru and H. Lahrech, Method, Journal of Cerebral Blood Flow & Metabolism, vol.6, issue.3, pp.618-649, 2007.
DOI : 10.1016/S0006-3495(93)81441-3

URL : https://hal.archives-ouvertes.fr/inserm-00381751

P. Rijken, H. Bernsen, and A. Van-der-kogel, Application of an Image Analysis System to the Quantitation of Tumor Perfusion and Vascularity in Human Glioma Xenografts, Microvascular Research, vol.50, issue.2, pp.141-53, 1995.
DOI : 10.1006/mvre.1995.1048

K. Schlageter, P. Molnar, G. Lapin, and D. Groothuis, Microvessel Organization and Structure in Experimental Brain Tumors: Microvessel Populations with Distinctive Structural and Functional Properties, Microvascular Research, vol.58, issue.3, pp.312-340, 1999.
DOI : 10.1006/mvre.1999.2188

C. Schwarzbauer, S. Morrissey, R. Deichmann, C. Hillenbrand, J. Syha et al., Quantitative magnetic resonance imaging of capillary water permeability and regional blood volume with an intravascular MR contrast agent, Magnetic Resonance in Medicine, vol.4, issue.5, pp.769-77, 1997.
DOI : 10.1002/mrm.1910370521

R. Shockley and J. Lamanna, Determination of rat cerebral cortical blood volume changes by capillary mean transit time analysis during hypoxia, hypercapnia and hyperventilation, Brain Research, vol.454, issue.1-2, pp.170-178, 1988.
DOI : 10.1016/0006-8993(88)90816-5

M. Todd and J. Weeks, Comparative Effects of Propofol, Pentobarbital, and Isoflurane on Cerebral Blood Flow and Blood Volume, Journal of Neurosurgical Anesthesiology, vol.8, issue.4, pp.296-303, 1996.
DOI : 10.1097/00008506-199610000-00007

M. Todd, J. Weeks, and D. Warner, Cerebral blood flow, blood volume, and brain tissue hematocrit during isovolemic hemodilution with hetastarch in rats, Am J Physiol, vol.263, pp.75-82, 1992.

M. Todd, J. Weeks, and D. Warner, The Influence of Intravascular Volume Expansion on Cerebral Blood Flow and Blood Volume in Normal Rats, Anesthesiology, vol.78, issue.5, pp.945-53, 1993.
DOI : 10.1097/00000542-199305000-00020

I. Tropres, S. Grimault, A. Vaeth, E. Grillon, C. Julien et al., Vessel size imaging, Magnetic Resonance in Medicine, vol.45, issue.3, pp.397-408, 2001.
DOI : 10.1002/1522-2594(200103)45:3<397::AID-MRM1052>3.3.CO;2-V

I. Tropres, L. Lamalle, M. Peoc-'h, R. Farion, Y. Usson et al., In vivo assessment of tumoral angiogenesis, Magnetic Resonance in Medicine, vol.88, issue.Suppl, pp.533-574, 2004.
DOI : 10.1002/mrm.20017

URL : https://hal.archives-ouvertes.fr/hal-00192515

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth et al., study, NMR in Biomedicine, vol.90, issue.3, pp.1043-56, 2008.
DOI : 10.1002/nbm.1278

URL : https://hal.archives-ouvertes.fr/inserm-00861168

B. Van-der-sanden, T. Rozijn, P. Rijken, H. Peters, A. Heerschap et al., Noninvasive Assessment of the Functional Neovasculature in 9L-Glioma Growing in Rat Brain by Dynamic 1H Magnetic Resonance Imaging of Gadolinium Uptake, Journal of Cerebral Blood Flow and Metabolism, vol.324, issue.7, 2000.
DOI : 10.1097/00004647-200005000-00013

P. Verant, R. Serduc, B. Van-der-sanden, C. Remy, and J. Vial, A Direct Method for Measuring Mouse Capillary Cortical Blood Volume Using Multiphoton Laser Scanning Microscopy, Journal of Cerebral Blood Flow & Metabolism, vol.36, issue.5, pp.1072-81, 2007.
DOI : 10.1371/journal.pbio.0040022

URL : https://hal.archives-ouvertes.fr/inserm-00381768

H. Weiss, E. Buchweitz, T. Murtha, and M. Auletta, Quantitative regional determination of morphometric indices of the total and perfused capillary network in the rat brain, Circulation Research, vol.51, issue.4, pp.494-503, 1982.
DOI : 10.1161/01.RES.51.4.494