K. Mrózek, N. Heerema, and C. Bloomield, Cytogenetics in acute leukemia, Blood Reviews, vol.18, issue.2, pp.115-136, 2004.
DOI : 10.1016/S0268-960X(03)00040-7

D. Grimwade, H. Walker, F. Oliver, K. Wheatley, C. Harrison et al., The Importance of Diagnostic Cytogenetics on Outcome in AML: Analysis of 1,612 Patients Entered Into the MRC AML 10 Trial, Blood, vol.92, pp.2322-2333, 1998.

K. Mrózek, G. Marcucci, P. Paschka, S. Whitman, and C. Bloomield, Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification?, Blood, vol.109, issue.2, pp.431-448, 2007.
DOI : 10.1182/blood-2006-06-001149

C. Haferlach, W. Kern, S. Schindela, A. Kohlmann, T. Alpermann et al., Gene expression of BAALC, CDKN1B, ERG, and MN1 adds independent prognostic information to cytogenetics and molecular mutations in adult acute myeloid leukemia, Genes, Chromosomes and Cancer, vol.98, issue.3, pp.257-265, 2012.
DOI : 10.1002/gcc.20950

K. Döhner, R. Schlenk, M. Habdank, C. Scholl, F. Rücker et al., Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations, Blood, vol.106, issue.12, pp.3740-3746, 2005.
DOI : 10.1182/blood-2005-05-2164

L. Bullinger, K. Dohner, E. Bair, S. Frohling, R. Schlenk et al., Use of Gene-Expression Profiling to Identify Prognostic Subclasses in Adult Acute Myeloid Leukemia, New England Journal of Medicine, vol.350, issue.16, pp.1605-1616, 2004.
DOI : 10.1056/NEJMoa031046

M. Radmacher, G. Marcucci, A. Ruppert, K. Mrózek, S. Whitman et al., Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study, Blood, vol.108, issue.5, pp.1677-1683, 2006.
DOI : 10.1182/blood-2006-02-005538

K. Metzeler, An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia, Blood, vol.112, issue.10, pp.4193-4201, 2008.
DOI : 10.1182/blood-2008-02-134411

J. Moreaux, B. Klein, R. Bataille, G. Descamps, S. Maïga et al., A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines, Haematologica, vol.96, issue.4, pp.574-582, 2011.
DOI : 10.3324/haematol.2010.033456

URL : https://hal.archives-ouvertes.fr/inserm-00550232

A. Kassambara, D. Hose, J. Moreaux, B. Walker, A. Protopopov et al., Genes with a spike expression are clustered in chromosome (sub)bands and spike (sub)bands have a powerful prognostic value in patients with multiple myeloma, Haematologica, vol.97, issue.4, 2011.
DOI : 10.3324/haematol.2011.046821

URL : https://hal.archives-ouvertes.fr/inserm-00727008

B. Wouters, B. Löwenberg, and R. Delwel, A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects, Blood, vol.113, issue.2, pp.291-298, 2009.
DOI : 10.1182/blood-2008-04-153239

B. Samra, E. Moreaux, J. Vacheret, F. Mills, K. Ruflé et al., New prognostic markers, determined using gene expression analyses, reveal two distinct subtypes of chronic myelomonocytic leukaemia patients, British Journal of Haematology, vol.113, issue.3, pp.347-356, 2012.
DOI : 10.1111/j.1365-2141.2012.09069.x

URL : https://hal.archives-ouvertes.fr/inserm-00681007

C. Pise-masison, M. Radonovich, K. Dohoney, J. Morris, O. Mahony et al., Gene expression profiling of ATL patients: compilation of disease-related genes and evidence for TCF4 involvement in BIRC5 gene expression and cell viability, Blood, vol.113, issue.17, pp.4016-4026, 2009.
DOI : 10.1182/blood-2008-08-175901

S. Lugthart, M. Cheok, M. Boer, W. Yang, A. Holleman et al., Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia, Cancer Cell, vol.7, issue.4, pp.375-386, 2005.
DOI : 10.1016/j.ccr.2005.03.002

A. Gandillet, S. Park, F. Lassailly, E. Griessinger, J. Vargaftig et al., Heterogeneous sensitivity of human acute myeloid leukemia to ??-catenin down-modulation, Leukemia, vol.538, issue.5, pp.770-780, 2011.
DOI : 10.1016/j.cell.2009.02.024

G. Luo, Y. Li, X. Han, Z. Huang, and A. J. , Structure-Based Discovery of a Novel Inhibitor Targeting the ?-Catenin/ Tcf4 Interaction, Biochemistry, vol.51, pp.724-731, 2011.

R. Byers, T. Currie, E. Tholouli, S. Rodig, and J. Kutok, MSI2 protein expression predicts unfavorable outcome in acute myeloid leukemia, Blood, vol.118, issue.10, pp.2857-2867, 2011.
DOI : 10.1182/blood-2011-04-346767

C. Zheng, L. Li, M. Haak, B. Brors, O. Frank et al., Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis, Leukemia, vol.278, issue.6, pp.1028-1034, 2006.
DOI : 10.1038/sj.leu.2404227

T. Haferlach, Clinical Utility of Microarray-Based Gene Expression Profiling in the Diagnosis and Subclassification of Leukemia: Report From the International Microarray Innovations in Leukemia Study Group, Journal of Clinical Oncology, vol.28, issue.15, pp.2529-2537, 2010.
DOI : 10.1200/JCO.2009.23.4732

L. De-andres-aguayo, F. Varas, and T. Graf, Musashi 2 in hematopoiesis. [Miscellaneous Article]. Current Opinion in Hematology, pp.268-272, 2012.

M. Kharas, Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia, Nature Medicine, vol.3, issue.8, pp.903-908, 2010.
DOI : 10.1038/nm.2187

T. Ito, Regulation of myeloid leukaemia by the cell-fate determinant Musashi, Nature, vol.98, issue.7307, pp.765-768, 2010.
DOI : 10.1038/nature09171

N. Allioli, S. Vincent, V. Vlaeminck-guillem, M. Decaussin-petrucci, F. Ragage et al., TM4SF1, a novel primary androgen receptor target gene over-expressed in human prostate cancer and involved in cell migration, The Prostate, vol.69, issue.8, pp.1239-1250, 2011.
DOI : 10.1002/pros.21340

J. Diss, D. Stewart, F. Pani, C. Foster, M. Walker et al., A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo, Prostate Cancer and Prostatic Diseases, vol.2, issue.3, pp.266-273, 2005.
DOI : 10.1016/j.febslet.2004.06.088

G. Gordon, R. Bueno, and D. Sugarbaker, Genes Associated With Prognosis After Surgery For Malignant Pleural Mesothelioma Promote Tumor Cell Survival In Vitro, BMC Cancer, vol.5, issue.6, p.169, 2011.
DOI : 10.1016/S1470-2045(04)01492-5

S. Shih, A. Zukauskas, D. Li, G. Liu, L. Ang et al., The L6 Protein TM4SF1 Is Critical for Endothelial Cell Function and Tumor Angiogenesis, Cancer Research, vol.69, issue.8, pp.3272-3277, 2009.
DOI : 10.1158/0008-5472.CAN-08-4886

M. Maicas, I. Vicente, C. , M. Marcotegui, N. Urquiza et al., Functional characterization of the promoter region of the human EVI1 gene in acute myeloid leukemia: RUNX1 and ELK1 directly regulate its transcription, Oncogene, vol.285, issue.16, 2012.
DOI : 10.1038/onc.2012.222

R. Wieser, The oncogene and developmental regulator EVI1: Expression, biochemical properties, and biological functions, Gene, vol.396, issue.2, pp.346-357, 2007.
DOI : 10.1016/j.gene.2007.04.012

L. Laricchia-robbio, R. Fazzina, D. Li, C. Rinaldi, K. Sinha et al., Point Mutations in Two EVI1 Zn Fingers Abolish EVI1-GATA1 Interaction and Allow Erythroid Differentiation of Murine Bone Marrow Cells, Molecular and Cellular Biology, vol.26, issue.20, pp.7658-7666, 2006.
DOI : 10.1128/MCB.00363-06

L. Laricchia-robbio, K. Premanand, C. Rinaldi, and G. Nucifora, EVI1 Impairs Myelopoiesis by Deregulation of PU

V. Senyuk, K. Sinha, D. Li, C. Rinaldi, S. Yanamandra et al., Repression of RUNX1 Activity by EVI1: A New Role of EVI1 in Leukemogenesis, Cancer Research, vol.67, issue.12, pp.5658-5666, 2007.
DOI : 10.1158/0008-5472.CAN-06-3962

S. Langabeer, J. Rogers, G. Harrison, K. Wheatley, H. Walker et al., EVI1 expression in acute myeloid leukaemia, British Journal of Haematology, vol.91, issue.1, pp.208-211, 2001.
DOI : 10.1038/sj.leu.2400547

S. Lugthart, E. Van-drunen, Y. Van-norden, A. Van-hoven, C. Erpelinck et al., High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated, High EVI1 Levels Predict Adverse Outcome in Acute Myeloid Leukemia: Prevalence of EVI1 Overexpression and Chromosome 3q26 Abnormalities Underestimated, pp.4329-4337, 2008.
DOI : 10.1182/blood-2007-10-119230

X. Cui and G. Churchill, Statistical tests for differential expression in cDNA microarray experiments, Genome Biology, vol.4, issue.4, pp.210-210, 2003.
DOI : 10.1186/gb-2003-4-4-210

R. Development and C. Team, R: A language and environment for statistical computing, 3-900051-07-0R Foundation for Statistical Computing, 2010.

R. Gentleman, Bioconductor: open software development for computational biology and bioinformatics

M. Eisen, P. Spellman, P. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns, Proceedings of the National Academy of Sciences, vol.95, issue.25, pp.14863-14868, 1998.
DOI : 10.1073/pnas.95.25.14863