R. Defronzo, Pathogenesis of type 2 diabetes mellitus, Medical Clinics of North America, vol.88, issue.4, pp.787-835, 2004.
DOI : 10.1016/j.mcna.2004.04.013

J. Mcgarry, Banting Lecture 2001: Dysregulation of Fatty Acid Metabolism in the Etiology of Type 2 Diabetes, Diabetes, vol.51, issue.1, pp.7-18, 2002.
DOI : 10.2337/diabetes.51.1.7

M. Krssak, F. Petersen, K. Dresner, and A. , Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1 H NMR spectroscopy study, Diabetologia, vol.42, issue.1, pp.113-116, 1999.
DOI : 10.1007/s001250051123

D. Pan, S. Lillioja, and A. Kriketos, Skeletal Muscle Triglyceride Levels Are Inversely Related to Insulin Action, Diabetes, vol.46, issue.6, pp.983-988, 1997.
DOI : 10.2337/diab.46.6.983

URL : http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1302&context=medpapers

G. Perseghin, P. Scifo, D. Cobelli, and F. , Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents, Diabetes, vol.48, issue.8, pp.1600-1606, 1999.
DOI : 10.2337/diabetes.48.8.1600

R. Unger, Minireview: Weapons of Lean Body Mass Destruction: The Role of Ectopic Lipids in the Metabolic Syndrome, Endocrinology, vol.144, issue.12, pp.5159-5165, 2003.
DOI : 10.1210/en.2003-0870

J. Adams, T. Pratipanawatr, and R. Berria, Ceramide Content Is Increased in Skeletal Muscle From Obese Insulin-Resistant Humans, Diabetes, vol.53, issue.1, pp.25-31, 2004.
DOI : 10.2337/diabetes.53.1.25

J. Chavez, T. Knotts, and L. Wang, A Role for Ceramide, but Not Diacylglycerol, in the Antagonism of Insulin Signal Transduction by Saturated Fatty Acids, Journal of Biological Chemistry, vol.278, issue.12, pp.10297-10303, 2003.
DOI : 10.1074/jbc.M212307200

W. Holland, J. Brozinick, and L. Wang, Inhibition of Ceramide Synthesis Ameliorates Glucocorticoid-, Saturated-Fat-, and Obesity-Induced Insulin Resistance, Cell Metabolism, vol.5, issue.3, pp.167-179, 2007.
DOI : 10.1016/j.cmet.2007.01.002

A. Dresner, D. Laurent, and M. Marcucci, Effects of free fatty acids on glucose transport and IRS-1???associated phosphatidylinositol 3-kinase activity, Journal of Clinical Investigation, vol.103, issue.2, pp.253-259, 1999.
DOI : 10.1172/JCI5001

M. Griffin, M. Marcucci, and G. Cline, Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade, Diabetes, vol.48, issue.6, pp.1270-1274, 1999.
DOI : 10.2337/diabetes.48.6.1270

S. Itani, N. Ruderman, F. Schmieder, and G. Boden, Lipid-Induced Insulin Resistance in Human Muscle Is Associated With Changes in Diacylglycerol, Protein Kinase C, and I??B-??, Diabetes, vol.51, issue.7, pp.2005-2011, 2002.
DOI : 10.2337/diabetes.51.7.2005

Y. Li, T. Soos, and X. Li, Protein Kinase C ?? Inhibits Insulin Signaling by Phosphorylating IRS1 at Ser1101, Journal of Biological Chemistry, vol.279, issue.44, pp.45304-45307, 2004.
DOI : 10.1074/jbc.C400186200

S. Timmers, P. Schrauwen, and J. De-vogel, Muscular diacylglycerol metabolism and insulin resistance, Physiology & Behavior, vol.94, issue.2, pp.242-251, 2008.
DOI : 10.1016/j.physbeh.2007.12.002

J. Langfort, T. Ploug, J. Ihlemann, M. Saldo, C. Holm et al., Expression of hormone-sensitive lipase and its regulation by adrenaline in skeletal muscle, Biochemical Journal, vol.340, issue.2, pp.459-465, 1999.
DOI : 10.1042/bj3400459

G. Haemmerle, R. Zimmermann, and M. Hayn, Hormone-sensitive Lipase Deficiency in Mice Causes Diglyceride Accumulation in Adipose Tissue, Muscle, and Testis, Journal of Biological Chemistry, vol.277, issue.7, pp.4806-4815, 2002.
DOI : 10.1074/jbc.M110355200

G. Haemmerle, A. Lass, and R. Zimmermann, Defective Lipolysis and Altered Energy Metabolism in Mice Lacking Adipose Triglyceride Lipase, Science, vol.312, issue.5774, pp.734-737, 2006.
DOI : 10.1126/science.1123965

R. Zimmermann, J. Strauss, and G. Haemmerle, Fat Mobilization in Adipose Tissue Is Promoted by Adipose Triglyceride Lipase, Science, vol.306, issue.5700, pp.1383-1386, 2004.
DOI : 10.1126/science.1100747

B. Ukropcova, M. Mcneil, and O. Sereda, Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor, Journal of Clinical Investigation, vol.115, issue.7, pp.1934-1941, 2005.
DOI : 10.1172/JCI24332DS1

L. Listenberger, X. Han, and S. Lewis, Triglyceride accumulation protects against fatty acid-induced lipotoxicity, Proceedings of the National Academy of Sciences, vol.100, issue.6, pp.3077-3082, 2003.
DOI : 10.1073/pnas.0630588100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC152249

S. Turpin, G. Lancaster, I. Darby, M. Febbraio, and M. Watt, Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance, AJP: Endocrinology and Metabolism, vol.291, issue.6, pp.1341-1350, 2006.
DOI : 10.1152/ajpendo.00095.2006

L. Pickersgill, G. Litherland, A. Greenberg, M. Walker, and S. Yeaman, Key Role for Ceramides in Mediating Insulin Resistance in Human Muscle Cells, Journal of Biological Chemistry, vol.282, issue.17, pp.12583-12589, 2007.
DOI : 10.1074/jbc.M611157200

N. Hessvik, S. Bakke, and K. Fredriksson, Metabolic switching of human myotubes is improved by n-3 fatty acids, The Journal of Lipid Research, vol.51, issue.8, pp.2090-2104, 2010.
DOI : 10.1194/jlr.M003319

D. Langin, A. Dicker, and G. Tavernier, Adipocyte Lipases and Defect of Lipolysis in Human Obesity, Diabetes, vol.54, issue.11, pp.3190-3197, 2005.
DOI : 10.2337/diabetes.54.11.3190

J. Bergstrom, Percutaneous Needle Biopsy of Skeletal Muscle in Physiological and Clinical Research, Scandinavian Journal of Clinical and Laboratory Investigation, vol.35, issue.7, pp.609-616, 1975.
DOI : 10.3109/00365517509095787

R. Defronzo, J. Tobin, and R. Andres, Glucose clamp technique: a method for quantifying insulin secretion and resistance, Am J Physiol, vol.237, pp.214-223, 1979.

A. Mairal, D. Langin, P. Arner, and J. Hoffstedt, Human adipose triglyceride lipase (PNPLA2) is not regulated by obesity and exhibits low in vitro triglyceride hydrolase activity, Diabetologia, vol.283, issue.7, pp.1629-1636, 2006.
DOI : 10.1007/s00125-006-0272-x

J. Folch, M. Lees, S. Stanley, and G. , A simple method for the isolation and purification of total lipides from animal tissues, J Biol Chem, vol.226, pp.497-509, 1957.

W. Morrison and L. Smith, Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride?methanol, J Lipid Res, vol.5, pp.600-608, 1964.

G. Liebisch, W. Drobnik, and M. Reil, Quantitative measurement of different ceramide species from crude cellular extracts by electrospray ionization tandem mass spectrometry (ESI-MS/MS), J Lipid Res, vol.40, pp.1539-1546, 1999.

E. Bligh and W. Dyer, A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION, Canadian Journal of Biochemistry and Physiology, vol.37, issue.8, pp.911-917, 1959.
DOI : 10.1139/o59-099

G. Liebisch, B. Lieser, J. Rathenberg, W. Drobnik, and G. Schmitz, High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1686, issue.1-2, pp.108-117, 2004.
DOI : 10.1016/j.bbalip.2004.09.003

C. Schmitz-peiffer and T. Biden, Protein Kinase C Function in Muscle, Liver, and ??-Cells and Its Therapeutic Implications for Type 2 Diabetes, Diabetes, vol.57, issue.7, pp.1774-1783, 2008.
DOI : 10.2337/db07-1769

R. Bonadonna, L. Groop, N. Kraemer, E. Ferrannini, D. Prato et al., Obesity and insulin resistance in humans: A dose-response study, Metabolism, vol.39, issue.5, pp.452-459, 1990.
DOI : 10.1016/0026-0495(90)90002-T

J. Jocken, C. Moro, and G. Goossens, Skeletal Muscle Lipase Content and Activity in Obesity and Type 2 Diabetes, The Journal of Clinical Endocrinology & Metabolism, vol.95, issue.12, pp.5449-5453, 2010.
DOI : 10.1210/jc.2010-0776

URL : https://hal.archives-ouvertes.fr/inserm-00613591

C. Moro, J. Galgani, and L. Luu, Influence of Gender, Obesity, and Muscle Lipase Activity on Intramyocellular Lipids in Sedentary Individuals, The Journal of Clinical Endocrinology & Metabolism, vol.94, issue.9, pp.3440-3447, 2009.
DOI : 10.1210/jc.2009-0053

URL : https://hal.archives-ouvertes.fr/inserm-00410118

J. Huang and B. Manning, A complex interplay between Akt, TSC2 and the two mTOR complexes: Figure 1, Biochemical Society Transactions, vol.37, issue.1, pp.217-222, 2009.
DOI : 10.1042/BST0370217

S. Itani, W. Pories, K. Macdonald, and G. Dohm, Increased protein kinase C theta in skeletal muscle of diabetic patients, Metabolism, vol.50, issue.5, pp.553-557, 2001.
DOI : 10.1053/meta.2001.22512

S. Itani, Q. Zhou, W. Pories, K. Macdonald, and G. Dohm, Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity, Diabetes, vol.49, issue.8, pp.1353-1358, 2000.
DOI : 10.2337/diabetes.49.8.1353

S. Neschen, K. Morino, and J. Dong, n-3 Fatty Acids Preserve Insulin Sensitivity In Vivo in a Peroxisome Proliferator-Activated Receptor-??-Dependent Manner, Diabetes, vol.56, issue.4, pp.1034-1041, 2007.
DOI : 10.2337/db06-1206

M. Bell, H. Wang, and H. Chen, Consequences of Lipid Droplet Coat Protein Downregulation in Liver Cells: Abnormal Lipid Droplet Metabolism and Induction of Insulin Resistance, Diabetes, vol.57, issue.8, pp.2037-2045, 2008.
DOI : 10.2337/db07-1383

C. Holm, Molecular mechanisms regulating hormone-sensitive lipase and lipolysis, Biochemical Society Transactions, vol.31, issue.6, pp.1120-1124, 2003.
DOI : 10.1042/bst0311120

L. Liu, Y. Zhang, N. Chen, X. Shi, B. Tsang et al., Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance, Journal of Clinical Investigation, vol.117, issue.6, pp.1679-1689, 2007.
DOI : 10.1172/JCI30565DS1

S. Schenk and J. Horowitz, Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid???induced insulin resistance, Journal of Clinical Investigation, vol.117, issue.6, pp.1690-1698, 2007.
DOI : 10.1172/JCI30566

A. Chibalin, Y. Leng, and E. Vieira, Downregulation of Diacylglycerol Kinase Delta Contributes to Hyperglycemia-Induced Insulin Resistance, Cell, vol.132, issue.3, pp.375-386, 2008.
DOI : 10.1016/j.cell.2007.12.035

J. Jocken, C. Roepstorff, and G. Goossens, Hormone-Sensitive Lipase Serine Phosphorylation and Glycerol Exchange Across Skeletal Muscle in Lean and Obese Subjects: Effect of ??-Adrenergic Stimulation, Diabetes, vol.57, issue.7, pp.1834-1841, 2008.
DOI : 10.2337/db07-0857

F. Smih, P. Rouet, and S. Lucas, Transcriptional Regulation of Adipocyte Hormone-Sensitive Lipase by Glucose, Diabetes, vol.51, issue.2, pp.293-300, 2002.
DOI : 10.2337/diabetes.51.2.293

J. Jocken and E. Blaak, Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity, Physiology & Behavior, vol.94, issue.2, pp.219-230, 2008.
DOI : 10.1016/j.physbeh.2008.01.002

S. Park, H. Kim, and S. Wang, Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart, AJP: Endocrinology and Metabolism, vol.289, issue.1, pp.30-39, 2005.
DOI : 10.1152/ajpendo.00251.2004

H. Mulder, M. Sörhede-winzell, and J. Contreras, Hormone-sensitive Lipase Null Mice Exhibit Signs of Impaired Insulin Sensitivity whereas Insulin Secretion Is Intact, Journal of Biological Chemistry, vol.278, issue.38, pp.36380-36388, 2003.
DOI : 10.1074/jbc.M213032200