M. Roberfroid, Inulin-type fructans: functional food ingredients, J Nutr, vol.20041133, issue.11, pp.2493-502, 2007.
DOI : 10.1201/9780203504932

R. Burcelin, E. Luche, and M. Serino, The gut microbiota ecology: a new opportunity for the treatment of metabolic diseases ?, Frontiers in Bioscience, vol.14, issue.1, pp.5107-5124, 2009.
DOI : 10.2741/3589

URL : https://hal.archives-ouvertes.fr/inserm-00410160

P. Cani, R. Bibiloni, and C. Knauf, Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice, Diabetes, vol.57, issue.6, pp.1470-81, 2008.
DOI : 10.2337/db07-1403

URL : https://hal.archives-ouvertes.fr/inserm-00410066

P. Cani, S. Possemiers, and T. Van-de-wiele, Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, Gut, vol.58, issue.8, 2009.
DOI : 10.1136/gut.2008.165886

M. Membrez, F. Blancher, and M. Jaquet, Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice, The FASEB Journal, vol.22, issue.7, pp.2416-2442, 2008.
DOI : 10.1096/fj.07-102723

URL : https://hal.archives-ouvertes.fr/inserm-00409179

P. Turnbaugh, R. Ley, and M. Mahowald, An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.20, issue.7122, pp.1027-1058, 2006.
DOI : 10.1038/nature05414

R. Ley, P. Turnbaugh, and S. Klein, Microbial ecology: Human gut microbes associated with obesity, Nature, vol.308, issue.7122, pp.1022-1025, 2006.
DOI : 10.1038/4441022a

R. Ley, F. Backhed, and P. Turnbaugh, Obesity alters gut microbial ecology, Proceedings of the National Academy of Sciences, vol.102, issue.31, pp.11070-11075, 2005.
DOI : 10.1073/pnas.0504978102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1176910

G. Hotamisligil, Inflammation and metabolic disorders, Nature, vol.314, issue.7121, pp.860-867, 2006.
DOI : 10.1038/nature05485

S. Shoelson, J. Lee, and A. Goldfine, Inflammation and insulin resistance, Journal of Clinical Investigation, vol.116, issue.7, pp.1793-801, 2006.
DOI : 10.1172/JCI29069

P. Cani, J. Amar, and M. Iglesias, Metabolic Endotoxemia Initiates Obesity and Insulin Resistance, Diabetes, vol.56, issue.7, pp.1761-72, 2007.
DOI : 10.2337/db06-1491

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Backhed, H. Ding, and T. Wang, The gut microbiota as an environmental factor that regulates fat storage, Proceedings of the National Academy of Sciences, vol.101, issue.44, pp.15718-15741, 2004.
DOI : 10.1073/pnas.0407076101

V. Velagapudi, R. Hezaveh, and C. Reigstad, The gut microbiota modulates host energy and lipid metabolism in mice, The Journal of Lipid Research, vol.51, issue.5, pp.1101-1113, 2010.
DOI : 10.1194/jlr.M002774

F. Backhed, J. Manchester, and C. Semenkovich, Mechanisms underlying the resistance to diet-induced obesity in germ-free mice, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.979-84, 2007.
DOI : 10.1073/pnas.0605374104

B. Samuel, A. Shaito, and T. Motoike, Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41, Proceedings of the National Academy of Sciences, vol.105, issue.43, pp.16767-72, 2008.
DOI : 10.1073/pnas.0808567105

R. Burcelin, V. Crivelli, and A. Dacosta, Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet, American Journal of Physiology - Endocrinology And Metabolism, vol.282, issue.4, pp.834-876, 2002.
DOI : 10.1152/ajpendo.00332.2001

M. Dols-lafargue, R. Willemot, and P. Monsan, Reactor optimization for ?-1,2 glucooligosaccharide synthesis by immobilized dextransucrase, Biotechnology and Bioengineering, vol.26, issue.3, pp.276-84, 2001.
DOI : 10.1002/bit.1183

C. Curat, A. Miranville, and C. Sengenes, From Blood Monocytes to Adipose Tissue-Resident Macrophages: Induction of Diapedesis by Human Mature Adipocytes, Diabetes, vol.53, issue.5, pp.1285-92, 2004.
DOI : 10.2337/diabetes.53.5.1285

G. Caraux and S. Pinloche, PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order, Bioinformatics, vol.21, issue.7, pp.1280-1281, 2005.
DOI : 10.1093/bioinformatics/bti141

URL : https://hal.archives-ouvertes.fr/lirmm-00105307

M. Dabek, L. Ferrier, and R. Roka, Luminal Cathepsin G and Protease-Activated Receptor 4, The American Journal of Pathology, vol.175, issue.1, pp.207-221, 2009.
DOI : 10.2353/ajpath.2009.080986

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708807

M. Federici, M. Hribal, and R. Menghini, Timp3 deficiency in insulin receptor-haploinsufficient mice promotes diabetes and vascular inflammation via increased TNF-??, Journal of Clinical Investigation, vol.115, issue.12, pp.3494-505, 2005.
DOI : 10.1172/JCI26052

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283942

P. Turnbaugh, M. Hamady, and T. Yatsunenko, A core gut microbiome in obese and lean twins, Nature, vol.8, issue.7228, pp.480-484, 2009.
DOI : 10.1038/nature07540

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677729

P. Schloss, S. Westcott, and T. Ryabin, Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities, Applied and Environmental Microbiology, vol.75, issue.23, pp.7537-7578, 2009.
DOI : 10.1128/AEM.01541-09

J. Boucher, D. Daviaud, and M. Simeon-remaud, Efecto del suplemento con gluco-oligosac??ridos sobre la utilizaci??n de glucosa en ratones alimentados con dieta grasa, Journal of Physiology and Biochemistry, vol.87, issue.2, pp.169-73, 2003.
DOI : 10.1007/BF03179912

M. Roberfroid, Prebiotics: the concept revisited, J Nutr, vol.137, pp.830-837, 2007.

X. Wu, C. Ma, and L. Han, Molecular Characterisation of the Faecal Microbiota in Patients with Type II Diabetes, Current Microbiology, vol.115, issue.1, pp.69-78, 2010.
DOI : 10.1007/s00284-010-9582-9

I. Ivanov, K. Atarashi, and N. Manel, Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria, Cell, vol.139, issue.3, pp.485-98, 2009.
DOI : 10.1016/j.cell.2009.09.033

I. Ivanov, F. Rde, L. Manel, and N. , Specific Microbiota Direct the Differentiation of IL-17-Producing T-Helper Cells in the Mucosa of the Small Intestine, Cell Host & Microbe, vol.4, issue.4, pp.337-386, 2008.
DOI : 10.1016/j.chom.2008.09.009

F. Shanahan, The host???microbe interface within the gut, Best Practice & Research Clinical Gastroenterology, vol.16, issue.6, pp.915-946, 2002.
DOI : 10.1053/bega.2002.0342

Y. Umesaki, Y. Okada, and S. Matsumoto, Segmented Filamentous Bacteria Are Indigenous Intestinal Bacteria That Activate Intraepithelial Lymphocytes and Induce MHC Class II Molecules and Fucosyl Asialo GM1 Glycolipids on the Small Intestinal Epithelial Cells in the Ex-Germ-Free Mouse, Microbiology and Immunology, vol.3, issue.8, pp.555-62, 1995.
DOI : 10.1111/j.1348-0421.1995.tb02242.x

I. Iliev, T. Vassileva, and C. Ignatova, Gluco-oligosaccharides synthesized by glucosyltransferases from constitutive mutants of Leuconostoc mesenteroides strain Lm 28, Journal of Applied Microbiology, vol.61, issue.0, pp.243-50, 2008.
DOI : 10.1038/sj.jim.2900558

Z. Hossain and T. Hirata, Molecular mechanism of intestinal permeability: interaction at tight junctions, Molecular BioSystems, vol.47, issue.12, pp.1181-1186, 2008.
DOI : 10.1039/b800402a

A. Bouloumie, L. Casteilla, and M. Lafontan, Adipose Tissue Lymphocytes and Macrophages in Obesity and Insulin Resistance: Makers or Markers, and Which Comes First?, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.7, pp.1211-1224, 2008.
DOI : 10.1161/ATVBAHA.108.168229

A. Bouloumie, C. Curat, and C. Sengenes, Role of macrophage tissue infiltration in metabolic diseases, Current Opinion in Clinical Nutrition and Metabolic Care, vol.8, issue.4, pp.347-54, 2005.
DOI : 10.1097/01.mco.0000172571.41149.52