O. Aalen, Ø. Borgan, and H. Gjessing, Survival and event history analysis: a process point of view, 2008.
DOI : 10.1007/978-0-387-68560-1

O. Aalen and G. Hkk, Understanding the shape of the hazard rate: a process point of view, Statistical Science, vol.16, issue.1, pp.1-22, 2001.

G. Box and D. Cox, An Analysis of Transformations, Journal of the Royal, 1964.

D. Clayton and E. Schifflers, Models for temporal variation in cancer rates. I: Age???period and age???cohort models, Statistics in Medicine, vol.33, issue.4, pp.449-467, 1987.
DOI : 10.1002/sim.4780060405

D. Commenges, The stochastic system approach to causality with a view toward lifecourse epidemiology Arxiv preprint arXiv, p.12035728, 2012.

D. Commenges and A. Gégout-petit, A general dynamical statistical model with causal interpretation, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.3, pp.719-736, 2009.
DOI : 10.1111/j.1467-9868.2009.00703.x

URL : https://hal.archives-ouvertes.fr/hal-00194281

K. Doksum and N. S. , Gaussian models for degradation processes-part I: Methods for the analysis of biomarker data, Lifetime Data Analysis, vol.257, issue.2, pp.131-144, 1995.
DOI : 10.1007/BF00985763

A. Flint, F. Hu, R. Glynn, H. Caspard, J. Manson et al., Excess Weight and the Risk of Incident Coronary Heart Disease Among Men and Women, Obesity, vol.288, issue.2, pp.377-383, 2010.
DOI : 10.1111/j.1463-1326.2004.00375.x

J. Fosen, E. Ferkingstad, Ø. Borgan, and O. Aalen, Dynamic path analysis???a new approach to analyzing time-dependent covariates, Lifetime Data Analysis, vol.5, issue.2, pp.143-167, 2006.
DOI : 10.1007/s10985-006-9004-2

J. Fox and S. Weisberg, An R Companion to Applied Regression, 2010.

D. Freedman, On The So-Called ???Huber Sandwich Estimator??? and ???Robust Standard Errors???, The American Statistician, vol.60, issue.4, pp.299-302, 2006.
DOI : 10.1198/000313006X152207

M. Gamborg, G. Jensen, T. Sørensen, and P. Andersen, Dynamic Path Analysis in Life-Course Epidemiology, American Journal of Epidemiology, vol.173, issue.10, p.1131, 2011.
DOI : 10.1093/aje/kwq502

G. Hansson, Inflammation, Atherosclerosis, and Coronary Artery Disease, New England Journal of Medicine, vol.352, issue.16, pp.1685-1695, 2005.
DOI : 10.1056/NEJMra043430

R. Hashemi, H. Jacqmin-gadda, and D. Commenges, A Latent Process Model for Joint Modeling of Events and Marker, Lifetime Data Analysis, vol.9, issue.4, pp.331-343, 2003.
DOI : 10.1023/B:LIDA.0000012420.36627.a6

URL : https://hal.archives-ouvertes.fr/inserm-00262051

W. Jiang and B. Turnbull, The Indirect Method: Inference Based on Intermediate Statistics?A Synthesis and Examples, Statistical Science, vol.19, issue.2, pp.239-263, 2004.
DOI : 10.1214/088342304000000152

W. Kannel, P. Wilson, B. Nam, D. Agostino, and R. , Risk stratification of obesity as a coronary risk factor, The American Journal of Cardiology, vol.90, issue.7, pp.697-701, 2002.
DOI : 10.1016/S0002-9149(02)02592-4

C. Kowalski, The Performance of Some Rough Tests for Bivariate Normality Before and After Coordinate Transformations to Normality, Technometrics, vol.15, issue.3, p.517, 1970.
DOI : 10.1214/aoms/1177732821

M. Lee and G. Whitmore, Threshold Regression for Survival Analysis: Modeling Event Times by a Stochastic Process Reaching a Boundary, Statistical Science, vol.21, issue.4, pp.501-513, 2006.
DOI : 10.1214/088342306000000330

K. Liang and S. Zeger, Longitudinal data analysis using generalized linear models, Biometrika, vol.73, issue.1, p.13, 1986.
DOI : 10.1093/biomet/73.1.13

D. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, vol.11, issue.2, pp.431-441, 1963.
DOI : 10.1137/0111030

S. Nicholls, Relationship between LDL, HDL, blood pressure and atheroma progression in the coronaries, Current Opinion in Lipidology, vol.20, issue.6, pp.491-496, 2009.
DOI : 10.1097/MOL.0b013e32832ec396

M. Pennell, G. Whitmore, and M. Lee, Bayesian random-effects threshold regression with application to survival data with nonproportional hazards, Biostatistics, vol.11, issue.1, pp.111-126, 2010.
DOI : 10.1093/biostatistics/kxp041

A. Presanis, D. Angelis, D. Goubar, A. Gill, O. Ades et al., Bayesian evidence synthesis for a transmission dynamic model for HIV among men who have sex with men, Biostatistics, vol.12, issue.4, pp.666-681, 2011.
DOI : 10.1093/biostatistics/kxr006

A. Raftery, G. Givens, and J. Zeh, Inference from a deterministic population dynamics model for bowhead whales, Journal of the American Statistical Association, pp.402-416, 1995.

P. Ridker, M. Cushman, M. Stampfer, R. Tracy, and C. Hennekens, Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men, New England Journal of Medicine, vol.336, issue.14, pp.973-979, 1997.
DOI : 10.1056/NEJM199704033361401

S. Saebø, T. Almøy, and A. Aastveit, Disease resistance modelled as first-passage times of genetically dependent stochastic processes, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.13, issue.1, pp.273-285, 2005.
DOI : 10.1111/j.1467-9876.2005.00483.x

T. Schweder and N. Hjort, Bayesian synthesis or likelihood synthesis?what does borel's paradox say?, Report-Internationl Whaling Commission, vol.46, pp.475-480, 1996.

A. Van-der-vaart, H. Houwelingen, L. Arends, and T. Stijnen, Asymptotic statistics Advanced methods in metaanalysis: multivariate approach and meta-regression, Biostatistics, vol.3, 2000.

S. Velilla, A note on the multivariate Box???Cox transformation to normality, Statistics & Probability Letters, vol.17, issue.4, pp.259-263, 1993.
DOI : 10.1016/0167-7152(93)90200-3

G. Whitmore, Normal-gamma mixtures of inverse Gaussian distributions, Scandinavian Journal of Statistics, vol.13, issue.3, pp.211-220, 1986.

P. Wilson, D. Agostino, R. Levy, D. Belanger, A. Silbershatz et al., Prediction of Coronary Heart Disease Using Risk Factor Categories, Circulation, vol.97, issue.18, pp.1837-1847, 1998.
DOI : 10.1161/01.CIR.97.18.1837

I. Yeo and R. Johnson, A new family of power transformations to improve normality or symmetry, Biometrika, vol.87, issue.4, pp.954-959, 2000.
DOI : 10.1093/biomet/87.4.954