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Abstract. We report new results for the second edition of the MIC-
CAI DTI tractography challenge. We build upon a new model, termed
Di�usion Directions Imaging, that describes the random motion of wa-
ter molecules in �brous tissues and we utilize it as an input to a mul-
ti�ber deterministic tractography algorithm. We apply the method to
track the corticospinal tract in two patients su�ering from tumors at
di�erent stages, with and without tumor in�ltration respectively.

1 Introduction

Tractography of the corticospinal tract (CST) using di�usion-weighted MRI
(DW-MRI) is especially challenging, mostly due to the numerous �ber crossings
in the corona radiata. When classical di�usion models (e.g. single or multiple ten-
sors) coupled with simple tractography algorithms (e.g. deterministic streamline)
are used, these crossings often make it impossible to track the most lateral �bers
of the CST [1]. These include especially important motor areas such as the hand
and the whole face, as shown by the homunculus of Pen�eld & Rasmussen. The
fact that HARDI sequences are prohibitively time-consuming for patients with
tumors raises the demand for new di�usion models and/or tractography algo-
rithms able to track these lateral �bers from clinical (fast) di�usion sequences,
having a small number of encoding gradients. We recently proposed a di�usion
model that meets these requirements even when using a simple deterministic
streamline algorithm [2].

Following the �rst edition of the DTI tractography challenge, we propose
in this paper a follow-up study of our proposed model and tractography algo-
rithm, based on the new data provided for the second tractography challenge. We
therefore brie
y outline our model in Section 2.1, the tractography algorithm in
Section 2.2, and the pipeline we used to extract the CST in Section 2.3. Finally,
we provide tractography results of the left and right CST for the two patients of
the challenge dataset in Section 3.
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2 Methods

2.1 Di�usion Modeling

In each voxel, water molecules are assumed to be distributed in several compart-
ments. We �rst describe how we model the di�usion within a single compartment.
Then, we introduce our multi-compartment model, coined Di�usion Directions
Imaging (DDI) [2, 3], and �nally we outline how we estimate its parameters.

Single-compartment Model The di�usion process induces, after a di�usion
time � , a random displacement of water molecules from their initial positionx 0

to a random position x = x 0 +
p

2� w .
Assuming aunique orientation of di�usion � � , we further split water molecules

in equal proportions according to whether they di�use along the direction +�
or the direction � � . Mathematically, it reads: w = � w + + (1 � � )w � , where
� � Be(1=2), w + and w � are two random variables that model the molecular
displacements along directions +� and � � , respectively, and� is an independent
Bernoulli random variable.

We then propose to model the random variablew + (the modeling of the
random variable w � is identical with � � instead of � ) as w + = u + v, where:

{ u follows avon Mises & Fisher distribution parametrized by (i) the radius
R > 0 of the sphere on which it is de�ned, (ii) the spherical coordinates (�; � )
of its mean direction � and (iii) its concentration parameter � � 0;

{ v follows a centered Gaussian distribution parametrized by a cylindri-
cally constrained [4] covariance matrixD = R 2

� +1 (I + � �� 0), where I is the
identity matrix and f � ; �; R g are the same parameters that characterizeu ;

{ u and v are statistically independent.

In essence, (i)� � can be interpreted as the local orientation of the �bers
which constrain the di�usion, (ii) R can be interpreted as the mean radial dis-
placement along this orientation and (iii) � can be interpreted as a measure of
anisotropy of the di�usion in the compartment.

The probability density function (pdf) of the molecular displacement x � x 0 is
then obtained by a mixture of two equally weighted pdfs, each one of them being
the convolution of the von Mises & Fisher pdf and the Gaussian pdf previously
described. This pdf is parametrized by four parameters, namely (i) the polar
angle in [0; �= 2] and (ii) the azimuthal angle in [0; 2� ] that de�ne � � , (iii) � � 0
and (iv) R > 0.

Multi-compartment Model Due to its low number of parameters, the single-
compartment model is particularly suited to be encompassed within a multi-
compartment model, which can account for more than one �ber orientation
within each voxel. We thereby model the pdf of molecular displacements as
a mixture of pdfs having the common parametric form proposed above.
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We assumem compartments associated withm di�erent �ber orientations
� � i (i = 1 ; : : : ; m). In each compartment, the di�usion is modeled according
to the pdf described in Section Single-compartment Model, with parameters
f� � i ; � i ; Ri g and mixture weight ai 2 [0; 1]. We also include an additional pdf in
the mixture, with � 0 = 0 and weight a0 2 [0; 1], to account for isotropic di�usion
which is thus only parametrized by R0 > 0.

In order to ensure that the mixture is still a pdf, we constrain
P m

i =0 ai = 1.
Considering m putative �ber orientations with this parametrization yields an
m-compartment DDI model with 5 m + 1 parameters.

The mixture weight a0 can be interpreted as the proportion of water molecules
that di�use isotropically while a mixture weight ai , i � 1 can be interpreted as
the proportion of water molecules that di�use anisotropically in the orientation
given by � � i .

Estimation of the DDI Parameters The theoretical di�usion weighted inten-
sities are the modulus of the Fourier transform of the pdf of molecular displace-
ments which can be analytically derived under the assumption of the DDI model
[2]. The 5m +1 unknown parameters of them-compartment DDI model are then
estimated using a least squares �tting on the raw di�usion weighted intensi-
ties, and this optimization is performed using the derivative-free BOBYQA
optimization algorithm, adapted for bounded constraints [5].

The model selection is performed using an index derived from the di�usion
tensor. Let � 1 � � 2 � � 3 > 0 be the three eigenvalues of the tensor, we de�ne
� DTI := 2� 1

� 2 + � 3
� 1. This index allows one to classify voxels whether they contain

no �ber ( � DTI = 0), one �ber ( � DTI >> 1) or more than one �ber (� DTI = 1).
The estimation of the DDI model is performed in two main steps:

1. The mean radial displacementR0 under isotropic di�usion is �rst estimated
using the 0-compartment DDI model.

2. With R0 �xed to the value determined at step 1, the other parameters of
the DDI model are estimated using:

{ the 1-compartment DDI model if � DTI < 0:3 or � DTI > 1:2;
{ the 2-compartment DDI model if 0:3 � � DTI � 1:2.

The compartments are lastly sorted in decreasing order according to their� .

2.2 Tractography Algorithm

Our goal is to track �bers linking multiple regions of interest (ROIs). To this
end, we developed a deterministic streamline algorithm, which can be viewed as
an extension of the original FACT method [6], adapted to the DDI model, using
a breadth-�rst -type search.

Starting from one of the ROIs, we de�ne N starting points at each voxel of
the ROI. Given one point along its path, we build the main �ber iteratively as
follows:
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1. If the number of putative �ber directions m = 0, we stop the tracking.
2. If m = 1, we compute FA1 and the angle � 1 between the input direction

and � 1 . If � 1 < � t and FA1 > FA t , then we follow the single putative �ber
direction � 1 with a step size ofl millimeters. Else, we stop the tracking.

3. If m = 2, we compute FA1, FA 2, the angle � 1 (resp. � 2) between the input
direction and � 1 (resp. � 2 ). If:

{ � t < � 1; � 2: we stop the tracking.
{ � 1 < � t < � 2: cf. the casem = 1.
{ � 2 < � t < � 1: if FA 2 > FA t , then we follow the direction � 2 with a step

size ofl millimeters, else we stop the tracking.
{ � 1; � 2 < � t : if FA 2 < FA t , then cf. the casem = 1; else if � 2 > r � � 1

then we sort the two �bers in ascending order according to the angles
� i . We follow the new direction � 1 with a step size ofl millimeters and
we record the second putative �ber direction � 2 (branch) for future use,
as it can be indicative of crossing/kissing/merging/diverging �bers.

Once we have tracked this main �ber, we perform the same tracking from all
the possible branching points that we have recorded along its path. Importantly,
for these trackings, the stepping rule and stopping criteria are identical as those
for the main �ber, but we do not record any possible mixed �ber con�guration
along these secondary paths, for which we only follow the main direction� 1 at
each step. We then lead the same tracking from the other ROIs. We only keep
the tracts going through all the seeding ROIs for further analysis. In practice,
we choose the parametersN = 1, l = 1, r = 0 :8, � t = 60 degrees (maximal
angle between two successive directions along the �ber) and FAt = 0 :2 (minimal
FA along the �ber). During the tracking, when a point is not on the grid of
the DW-MR images, we compute the DDI model using a trilinear interpolation
directly on the model parameters.

2.3 Tractography Pipeline Applied to the Challenge Datasets

We utilize the following processing pipeline to extract the CST for the challenge
datasets. An expert neuroanatomist delineated two ROIs on each side (left and
right) of the color FA images extracted from the di�usion tensor images provided
by the challenge organisers. One is located in the posterior limb of the internal
capsule and the other in the superior part of the mesencephalon. In addition,
since crossing �ber tracts such as the association or commissural �ber tracts
may be considered as bifurcations of the CST by the tractography algorithm,
the same expert also delineated regions through which the tracts are not allowed.

All datasets were then processed in three steps:

1. Di�usion-weighted MRI denoising : DW-MRI is subject to random noise
yielding measured intensities that are di�erent from their theoretical val-
ues, and thus biasing the subsequently estimated di�usion models. We �l-
tered the di�usion-weighted MR images with the Rician-adapted Non-Local
Means �lter [7], which has been shown to e�ciently denoise such images
while preserving �ne anatomical structures.
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2. DDI model estimation from the denoised di�usion weighted images computed
at step 1

3. Extraction of the left and right CST using the delineated ROIs and the DDI
volume.

All the software used in this challenge (DDI estimation and tractography) was
implemented utilizing ITK and VTK and is fully multi-threaded. This software
will be made available as a free package soon.

3 Results

The 2012 MICCAI DTI tractography challenge consists of a set of two patients
su�ering from tumors at various grades. In addition to DWI, T1 and T2 weighted
images were available along with the delineation of the tumors of the two patients
so that we could produce combined views to help the surgeon, for example, to
plan a tumor removal surgery.

On both patients, the estimation of the DDI volume took about 10 minutes
on a 8-core Xeon 3 GHz computer while the tractography of each CST took
about 1 to 2 minutes on the same machine. The model estimation step is longer
but still reasonably short and can be performed o�ine in a clinical context.

3.1 Tractography on Patient 1

Fig. 1 presents axial and coronal views of the left and right CST extracted on
patient 1, superimposed on the T1w image or the T2w image. In addition, we
superimposed the manual delineations and provide 3D combined visualizations
to evaluate the relative positions of the tumor and motor pathways.

Several things may be noticed for this patient. First, the left CST, which
is not a�ected by the tumor, is able to spread into the di�erent motor cortex
regions (see Fig. 1.b,e,f) thanks to our new multi-compartment model. On the
contrary, the right CST is not going through the cavity (which was expected),
and neither through the tumor. Therefore, the number of �bers found on the
right side is lower than on the left side of the brain as shown in Fig. 1.f. Some
right CST �bers are also going through the gliosis. Finally, the 3D views clearly
highlight a very close proximity between the tumor and the motor pathways,
and therefore provide crucial information to the surgeon in case another surgical
resection is planned.

3.2 Tractography on Patient 2

The tumor for the second patient is di�erent as it is an in�ltrating tumor. As
for patient 1, we present in Fig. 2 axial and coronal views of the left and right
CST extracted, superimposed on the T1w image or the T2w image, as well as
3D combined visualizations to evaluate the relative positions of the tumor and
motor pathways.
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Illustration of CST on the First Patient . Combined views of the obtained
�ber tracts overlayed on T1 (a,b,c) and T2 (d,e,f), illustrating the proximity of the
tumor to crucial motor pathways. Regions of interest correspond to the tumor (red),
the resection cavity (blue) and gliosis (yellow). (a,d,b,e) are respectively axial and
coronal views, while (c,f) are 3D views.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of CST on the Second Patient . Combined views of the ob-
tained �ber tracts overlayed on T1 (a,b,c) and T2 (d,e,f), illustrating the relative
positions of the tumor and the motor �ber tracts. Regions of interest correspond to
the solid tumor (red) and the in�ltrating tumor (green). (a,d,b,e) are respectively axial
and coronal views, while (c,f) are 3D views.
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As for patient 1, the left CST is well extracted, showing some bifurcations
towards several regions of the motor cortex. The number of �bers in the right
CST is lower than in the left CST (see Fig. 2.b,e,f), which is due to the presence
of the edema. However, contrary to patient 1, the right CST is not completely
blocked by the tumor as it is of di�erent nature. The most central part of the right
CST is indeed still visible in our tractography (see axial and coronal views on Fig
2.b,d). However the outer parts (e.g. corresponding to the hand or face areas)
are much sparser or even not found by our tractography algorithm. Again, both
3D views provide an important insight on the relative positions of the tumor,
the edema and the CST, which can help the neurosurgeon in his decisions.

References

1. Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Prob-
abilistic di�usion tractography with multiple �bre orientations: What can we gain?
Neuroimage 34(1) (January 2007) 144{155

2. Stamm, A., P�erez, P., Barillot, C.: Di�usion directions imaging. Research Report
RR-7683, INRIA (2011)

3. Stamm, A., P�erez, P., Barillot, C.: A new multi-�ber model for low angular resolu-
tion di�usion MRI. In: 9th IEEE International Symposium on Biomedical Imaging
(ISBI'2012). (2012) 936{939

4. Friman, O., Westin, C.F.: Uncertainty in white matter �ber tractography. In:
MICCAI. (2005) 107{14

5. Powell, M.: The BOBYQA algorithm for bound constrained optimization with-
out derivatives. Technical report, Centre for Mathematical Sciences, University of
Cambridge, UK (August 2009)

6. Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.: Three-dimensional tracking of
axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2)
(February 1999) 265{269

7. Wiest-Daessl�e, N., Prima, S., Coup�e, P., Morrissey, S.P., Barillot, C.: Rician noise
removal by non-local means �ltering for low signal-to-noise ratio MRI: applications
to DT-MRI. In: MICCAI, New York, United States (2008) 171{9

8. Descoteaux, M., Wiest-Daessl�e, N., Prima, S., Barillot, C., Deriche, R.: Impact of
Rician Adapted Non-Local Means Filtering on HARDI. In: MICCAI. (2008) 122{30


