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Abstract. Non-invasive measurement of Cerebral Blood Flow (CBF) is
now feasible thanks to the introduction of Arterial Spin Labeling (ASL)
Magnetic Resonance Imaging (MRI) techniques. To date, the low signal-
to-noise ratio of ASL gives us no option but to repeat the acquisition in
order to accumulate enough data to get a reliable signal. Perfusion signal
is usually extracted by averaging across the repetitions. However, due to
its zero breakdown point, the sample mean is very sensitive to outliers.
A single outlier can thus have strong detrimental effects on the sample
mean estimate.
In this paper, we propose to estimate robust ASL CBF maps by means of
M-estimators to overcome the deleterious effects of outliers. The behav-
ior of this method is compared to z-score thresholding as recommended
in [8]. Validation on simulated and real data is provided. Quantitative
validation is undertaken by measuring the correlation with the most
widespread technique to measure perfusion with MRI: Dynamic Suscep-
tibility weighted Contrast (DSC).

1 Introduction

Arterial Spin Labeling (ASL), a Magnetic Resonance Imaging (MRI) technique
introduced in the early 1990s, allows non-invasive quantification of Cerebral
Blood Flow (CBF) [2]. Contrary to Dynamic Susceptibility weighted Contrast
(DSC), the most widespread technique to measure perfusion with MRI, ASL
does not rely on the injection of an exogenous contrast agent.

During the ASL acquisition, blood water, used as an endogenous tracer, is
labeled with a radio-frequency pulse in the neck of the patient. After a delay
of a few hundred of milliseconds, called inversion time, a labeled image of the
brain is acquired. A control image is acquired without prior labeling and the
difference between control and label image leads to a perfusion weighted image.
A model is then applied to this image to obtain a quantification of CBF. Besides
the absence of allergic reaction risk compared to DSC, ASL is particularly well
suited for longitudinal studies or studies on patients with difficult venous access
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such as children. However this comes at the cost of low signal to noise ratio
(SNR) and lower spatial resolution than DSC.

Due to the low SNR of the ASL sequence, a single pair of control and label
image is not sufficient to measure perfusion. The acquisition is usually repeated
several times, leading to R pairs of images (usually R≥30). Perfusion information
is then usually extracted by pair-wise subtracting the control and label images
and averaging across the repetitions.

Though sample average, as an unbiased estimate of mean, ensures conver-
gence as R grows, it has a zero breakdown point and is thus very sensitive to
outliers. In particular, sudden subject motion may not be correctly corrected by
registration and cause strong corolla-shaped artefacts. To avoid the detrimental
effects that a few abnormal repetitions could have in the final perfusion map,
it is often suggested to ignore the volumes corresponding to the motion peaks
using an appropriate threshold [7]. However the choice of these thresholds is
empirical and there is no common rule across studies nor automatic methods to
tune these ad-hoc parameters. In [8], the authors proposed an automatic algo-
rithm for outlier rejection in ASL perfusion series based on z-score thresholding
at the volume (or slice) level. Their method produced satisfactory results on a
qualitative validation based on ratings made by medical experts.

How to appropriately deal with outliers has been largely studied in the statis-
tical literature and a large range of methods has emerged. Z-score is known to be
sensitive upon sample size and is suffering from masking effects when more than
one outliers is present in the serie [6]. Indeed, in a dataset containing more than
one outlier, the standard deviation estimate will be artificially inflated which
may prevent z-score based outlier detection. On the other hand, M-estimators
are robust techniques to estimate location and scale in the presence of outliers [5].
We focus on Huber’s M-estimator [3], as it is the most widely used.

In this paper, we propose to estimate robust ASL CBF maps by means of
Huber’s M-estimator. This method is compared to z-thresholding as proposed
in [8]. Validation is undertaken by measuring the voxel-to-voxel correlation be-
tween ASL CBF maps and DSC CBF maps as an affine relationship is expected
between these estimates of CBF [9].

Section 2 presents the statistical methods and the validation procedure. Sec-
tion 3 presents the results on simulated data and on real datasets from patients
diagnosed with brain tumors.

2 Material and Methods

2.1 Robust CBF map creation

Starting from a perfusion-weighted serie, namely a 4D volume made of the R rep-
etitions obtained after pair-wise subtracting the control and label scans, the ob-
jective is to compute a single perfusion weighted volume. This section presents
z-score thresholding and M-estimators as statistical method to compute robust
CBF maps.
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Z-score thresholding In [8], an outlier rejection algorithm based on z-scores is
proposed in order to remove outliers from the perfusion-weighted serie. The out-
lier rejection is performed both on a volume-by-volume and a slice-by-slice basis.
For each volume (respectively slices) v, the mean µv and standard deviation σv
of in-brain voxel intensities is computed. Assuming a gaussian distribution of µv

and σv, a volume is then rejected if:

|µv| > avgRi=1
(µi) + 2.5 avgRi=1

(µi),

or σv > avgRi=1
(σi) + 1.5 stdRi=1

(σi) (1)

where avg and std stand for the sample mean and sample standard deviation.
The constants 1.5 and 2.5 were determined empirically. To avoid over-filtering,
series verifying ln(maxRi=1

(σi) − minRi=1
(σi)) < 1 are not searched for outliers.

Once the outliers are identified, the perfusion map is then computed by averaging
the remaining repetitions.

M-estimators Another solution to deal with outliers is to employ robust statis-
tics such as M-estimators, which will not be overly influenced by outliers. In [3],

M-estimators are defined, given a function ρ, as solutions θ̂ of:

θ̂ = argmin
θ

(

n
∑

i=1

ρ(xi, θ)
)

. (2)

If ρ is differentiable, and ψ is its derivative then eq. (2) can be solved by
finding the root of:

n
∑

i=1

ψ(xi, θ) = 0. (3)

The sample average can be seen as an M-estimator with ρ(xi, θ) = (xi − θ)2

and ψ(xi, θ) = 2(xi − θ) leading to θ̂ =
∑

n

i=1
xi

N
.

The M-estimator of location proposed by Huber in [3] is defined by:

ψ(xi, θ) = γ
(xi − θ

σ

)

where γ(x) =











−k, x < −k

x, −k < x < k

k, x > k

(4)

k will be set to 1.345 throughout this paper corresponding to 95% efficiency in
gaussian data [4]. Likewise, σ is estimated by a robust estimator: the median
absolute deviation divided by 0.6745. Huber’s M-estimator is applied voxel by
voxel on the perfusion weighted serie to obtain the robust perfusion weighted
map.

2.2 Validation

Simulated data In order to assess the efficiency of each technique, we generated
simulated data with a known quantity of outliers based on two real datasets. Out-
liers were drawn from a uniform distribution with extrema (-100;100). These val-
ues were determined empirically. Indeed, in an uncorrupted perfusion-weighted
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map, the values usually range between -10 and +10 and voxel standard deviation
can in fact be up to 50. Also, by looking at the values of identified outliers in a
real dataset, we found values as big as 300 in absolute value.

As data corruption usually affects multiple voxels per volume [8], outlier
simulation was undertaken by corrupting from 0% to 50% percent of the volumes.
We will refer lately to these volumes as outlier volumes. Then, 2%, 20% or 50% of
the voxels in each outlier volume were replaced by random outliers leading to low,
medium and high level of volume corruption respectively. Each simulation was
repeated 30 times in order to get estimates of the standard deviation. Simulated
data were based on two real datasets as described below.

The first dataset was a perfusion-weighted serie with a large number of rep-
etitions, R=250, from a healthy subject. The perfusion-weighted map obtained
by averaging the 250 repetitions was considered as the ground truth. The 60 first
volumes of the serie were extracted and used as dataset for robust CBF map
estimation. The quality of the maps produced by each method was measured in
term of sum of square difference (SSD) with the estimated ground truth.

The second dataset was built on the perfusion-weighted map of one patient
diagnosed with a brain tumor. The original ASL CBF map of this subject pre-
sented few artefacts identified by visual inspection and a very low level of mo-
tion (<0.5mm and <0.2◦ in all directions). As DSC is currently the reference
method to estimate perfusion with MRI, the quality of the maps produced by
each method was measured by computing the Pearson linear correlation coeffi-
cient with the DSC CBF map. This assumes an affine relationship between CBF
maps produced by ASL and DSC [9].

Experiments on real clinical data sets The efficiency of both algorithms was
estimated on a dataset of 14 perfusion-weighted maps of patients diagnosed with
brain tumors. The quality of the ASL CBF map was assessed by voxel-to-voxel
correlation with the DSC CBF map.

2.3 Data

Data : 14 patients diagnosed with brain tumors were involved in this study.
Data acquisition was performed on a 3T Siemens Verio MR scanner with a 32-
channel head-coil. Patients were scanned in the context of clinical practice. The
imaging protocol included a 3D T1-weighted anatomical sequence (TR: 1900ms,
TE: 2.27ms, FOV: 256 x 256 x 176mm3, flip angle: 9◦, resolution: 1 x 1 x 1mm3),
a PICORE Q2TIPS sequence with crusher gradients (TR: 3000ms, TE: 18ms,
FOV: 192 x 192mm2, flip angle: 90◦, in plane resolution: 3x3mm2, slice thick-
ness: 7mm, inter-slice gap: 0.7mm, TI: 1700ms, TIwd: 700ms, R = 60), a DSC se-
quence (GRE EPI, TR: 1500ms, TE: 30ms, FOV: 230 x 230mm2, flip angle: 90◦,
in plane resolution: 1.8 x 1.8mm2, slice thickness: 4mm, inter-slice gap: 1.2mm)
and 3D T1-weighted post gadolinium sequence (TR: 1900ms, TE: 2.27ms, flip
angle: 9◦, FOV: 250 x 250 x 176mm3, resolution: 1 x 1 x 1mm3).
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1 healthy subject was involved in this study, the imaging protocol included
a 3D T1-weighted anatomical sequence (same parameters as above) and a PI-
CORE Q2TIPS sequence with crusher gradients (TR: 2500ms, TE: 19ms, flip an-
gle: 90◦, in plane resolution: 3x3mm2, slice thickness: 7mm, inter-slice gap: 0.7mm,
TI: 1800ms, TIwd: 700ms, R = 250).

Pre-processing : Image pre-processing was performed using SPM8 (Wellcome
Department of Imaging Neuroscience, University College, London) Matlab tool-
box. A six-parameter rigid-body registration of the ASL volumes was carried
out in order to reduce undesired effects due to subject motion. Coregistration
on grey matter map was then performed based on normalised mutual informa-
tion. The average of unlabeled volumes was used to estimate the geometrical
transformation to apply to each volume.

The 60 unlabeled and labeled ASL volumes were pair-wise subtracted in order
to obtain a perfusion weighted serie per subject. Robust ASL perfusion-weighted
map was then carried out as described in section 2. A standard kinetic model [1]
was then applied in order to obtain quantitative ASL CBF maps.

The DSC images were processed using MR manufacturer software by manu-
ally choosing an arterial input function to calculate CBF and mean transit time
maps. Similarly to ASL, DSC CBF maps were coregistered on grey matter maps.

3 Results

3.1 Validation on simulated data

Dataset with 250 repetitions: Figure 1 presents the simulation study based
on a healthy subject data. The performances of sample average, z-score thresh-
olding [8], and Huber’s M-estimator are assessed by measuring the SSD of the
ASL CBF map with the ground truth estimated by averaging a large number of
repetitions.

As described in fig. 1, with a medium or a high level of corruption, z-score
thresholding and Huber’s M-estimator perform equally and better than averag-
ing until 20% of volumes are corrupted. If more than 20% of the volumes are
affected by outliers, then M-estimators provide better estimates than both z-
score thresholding and averaging. The robust M-estimator CBF map is closer to
the ground truth and less sensitive in an increase in the number of outliers. The
same behavior is observed with a low number of corrupted voxels per volume
except that the separation point is at 5% of corrupted volumes instead of 20%.
The lower performances of z-thresholding when the number of corrupted vol-
umes exceed 20% (or 5% with low corruption) is a consequence of the masking
effect which penalize this estimator when several outliers are present in the se-
rie. Moreover, the performance of Huber’s M-estimator always depicts a smaller
variance than z-thresholding.

Both Huber’s M-estimator and z-score thresholding provide better estimate
than the sample average. As the level of corruption per volume decreases, the
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separation point between Huber’s M-estimator and z-score thresholding tends
to become lower. This can probably be explained by the fact that the method
proposed in [8] is based on a global mean and standard deviation estimate per
volume (or slice) and is therefore less suited to detect lowly corrupted volumes.

Fig. 1. Healthy subject dataset with simulated outliers: SSD of ASL CBF map, com-
puted by M-estimator, z-score thresholding [8] and sample average, with the estimated
ground truth. Low, medium and high level of volume corruption, from 0% to 50% of
corrupted volumes. In all configuration Huber’s M-estimators is either better or as good
as z-thresholding to estimate robust CBF maps. In the presence of outliers, Huber’s
M-estimator is always more accurate than the sample average.
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Fig. 2. Patient dataset with simulated outliers: correlation of ASL CBF map, computed
by M-estimator, z-score thresholding [8] and sample average, with the DSC CBF map.
Low, medium and high level of volume corruption, from 0% to 50% of corrupted vol-
umes. The white arrow points the tumor site. A similar behavior as for healthy subject
simulation (fig. 1) is observed outlining that correlation with DSC CBF is a valuable
indicator to measure the quality of the ASL CBF estimates.

Simulation based on pathological data: Figure 2 presents the simulation
study based on pathological data of a subject suffering from a brain tumor.
The performances of sample average, z-score thresholding [8], and Huber’s M-
estimator are assessed by measuring the correlation coefficient of ASL CBF with
DSC CBF.

The simulation involving a high level of volume corruption leads to very
similar results than the one obtained in the previous section on healthy sub-
ject data. Both Huber’s M-estimator and z-thresholding perform better than
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averaging until 20% of corrupted volumes. After this threshold, z-thresholding
performances drop until reaching the same correlation as the sample average for
30% of outlier volumes. This result suggests that correlation with DSC is a good
measure of ASL CBF map quality. For medium level of volume corruption, the
same tendency is observable.

With a low level of volume corruption, the trend is less clear. Overall the
correlation coefficient seems much less affected by the increasing number of out-
liers. Z-score thresholding and Huber’s M-estimator are both better estimator
of the mean than the sample average. Z-score thresholding however displays a
higher variance in its performance estimates. In comparison with the previous
simulation study, there is probably a higher level of noise in the so-called “un-
corrupted” pathological data than in the “uncorrupted” healthy subject data.
The inherent higher level of noise in pathological data might prevent the correct
detection of low level of volume corruption.

3.2 Validation on real data

Table 1 presents the correlation coefficient obtained for 14 patients diagnosed
with brain tumors. Overall, there is a significant improvement of both Huber’s M-
estimator (p=0.007) and z-score thresholding (p=0.010) over the sample average
(paired two sample t-test). In this dataset, there was no significant difference
between the two filtering methods (paired t-test p=0.84).

Table 1. Real clinical dataset: correlation coefficient with DSC CBF map of ASL
CBF map computed by M-estimator, z-score thresholding [8] and sample average in
14 patients diagnosed with brain tumors. Last column: mean and standard deviation
across subjects.

Patients 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Mean ± std.

Huber M-est. .45 .32 .29 .51 .52 .34 .28 .12 .14 .27 .35 .16 .17 .17 .29 ± .13
z-score thresh. .45 .24 .27 .53 .51 .35 .28 .15 .14 .30 .35 .18 .16 .20 .29 ± .13

Average .46 .25 .20 .42 .52 .31 .25 .12 .14 .25 .32 .13 .17 .12 .26 ± .13

Fig. 3 presents an example of robust ASL CBF maps in which motion arte-
facts are significantly reduced by both Huber’s M-estimator and z-thresholding.

4 Conclusion

We studied the ability of Huber’s M-estimator to compute robust CBF maps
in ASL. The behavior of this estimator was studied in both simulated and
real clinical datasets and compared to an outlier removal technique based on
z-thresholding previously introduced in the ASL literature [8].
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Fig. 3. Example of robust CBF map in one patient: three contiguous axial slices are
depicted. White arrows outlines large artefacts presents in the averaged perfusion-
weighted map and correctly corrected by both z-score thresholding and M-estimator.

Out of this study, it is confirmed that outlier filtering, either via outlier
removal or M-estimation, provides more robust CBF maps than the sample av-
erage. Though, on real clinical datasets, both robust methods performed equally,
the simulation study clearly stated the superior robustness of M-estimators over
z-score thresholding. Overall Huber’s M-estimates are either as good as or better
than z-thresholding and are always less variable.

As M-estimators are able to deal with a broader range of outliers, we recom-
mend the use of M-estimators as robust method to compute ASL CBF maps.
This study focused on patients diagnosed with brain tumors, as DSC sequence
is part of their routine clinical protocol. Other pathologies might be related
with different outlier patterns and a larger validation study on real datasets is
therefore needed in order to outline the cases in which M-estimator will have a
significantly better behavior than z-thresholding. Future work will also investi-
gate the effect of other types of M-estimators like Tukey’s Biweight.
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