J. Chen, O. Odenike, and J. Rowley, Leukaemogenesis: more than mutant genes, Nature Reviews Cancer, vol.5, issue.1, pp.23-36, 2010.
DOI : 10.1038/nrc2765

E. Baxter, L. Scott, P. Campbell, C. East, N. Fourouclas et al., Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders, The Lancet, vol.365, issue.9464, pp.1054-1061, 2005.
DOI : 10.1016/S0140-6736(05)74230-6

C. James, V. Ugo, L. Couedic, J. Staerk, J. Delhommeau et al., A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera, Nature, vol.100, issue.7037, pp.1144-1148, 2005.
DOI : 10.1182/blood-2002-09-2839

R. Kralovics, F. Passamonti, A. Buser, S. Teo, R. Tiedt et al., in Myeloproliferative Disorders, New England Journal of Medicine, vol.352, issue.17, pp.1779-1790, 2005.
DOI : 10.1056/NEJMoa051113

R. Levine, M. Wadleigh, J. Cools, B. Ebert, G. Wernig et al., Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis, Cancer Cell, vol.7, issue.4, pp.387-397, 2005.
DOI : 10.1016/j.ccr.2005.03.023

B. Druker, S. Tamura, E. Buchdunger, S. Ohno, G. Segal et al., Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr???Abl positive cells, Nature Medicine, vol.6, issue.5, pp.561-566, 1996.
DOI : 10.1038/376785a0

A. Fathi and O. Wahab, Mutations in Epigenetic Modifiers in Myeloid Malignancies and the Prospect of Novel Epigenetic-Targeted Therapy, Advances in Hematology, vol.116, issue.5
DOI : 10.1186/1471-2407-10-197

V. Gelsi-boyer, M. Brecqueville, R. Devillier, A. Murati, M. Mozziconacci et al., Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases, Journal of Hematology & Oncology, vol.5, issue.1, p.12, 2012.
DOI : 10.1182/blood-2009-07-235358

URL : https://hal.archives-ouvertes.fr/inserm-00698796

T. Graubert and M. Walter, Genetics of Myelodysplastic Syndromes: New Insights, Hematology, vol.2011, issue.1, pp.543-549, 2011.
DOI : 10.1182/asheducation-2011.1.543

G. Marcucci, T. Haferlach, and H. Dohner, Molecular Genetics of Adult Acute Myeloid Leukemia: Prognostic and Therapeutic Implications, Journal of Clinical Oncology, vol.29, issue.5, pp.475-486, 2011.
DOI : 10.1200/JCO.2010.30.2554

T. Mercher, C. Quivoron, L. Couronne, C. Bastard, W. Vainchenker et al., TET2, a tumor suppressor in hematological disorders, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1825, issue.2, pp.173-177, 2012.
DOI : 10.1016/j.bbcan.2011.12.002

F. Schaub, R. Jager, R. Looser, H. Hao-shen, S. Hermouet et al., Clonal analysis of deletions on chromosome 20q and JAK2-V617F in MPD suggests that del20q acts independently and is not one of the predisposing mutations for JAK2-V617F, Blood, vol.113, issue.9, pp.2022-2027, 2009.
DOI : 10.1182/blood-2008-07-167056

S. Takahashi, Current findings for recurring mutations in acute myeloid leukemia, Journal of Hematology & Oncology, vol.4, issue.1, p.36, 2011.
DOI : 10.1186/1756-8722-3-17

A. Tefferi, Mutations galore in myeloproliferative neoplasms: Would the real Spartacus please stand up?, Leukemia, vol.116, issue.7, pp.1059-1063, 2011.
DOI : 10.1084/jem.20090004

F. Thol, F. Damm, A. Ludeking, C. Winschel, K. Wagner et al., Mutations in Acute Myeloid Leukemia, Journal of Clinical Oncology, vol.29, issue.21, pp.2889-2896, 2011.
DOI : 10.1200/JCO.2011.35.4894

W. Vainchenker, F. Delhommeau, S. Constantinescu, and O. Bernard, New mutations and pathogenesis of myeloproliferative neoplasms, Blood, vol.118, issue.7, pp.1723-1735, 2011.
DOI : 10.1182/blood-2011-02-292102

M. Brecqueville, N. Cervera, J. Adélaide, J. Rey, N. Carbuccia et al., Mutations and deletions of the SUZ12 polycomb gene in myeloproliferative neoplasms, Blood Cancer Journal, vol.279, issue.8, p.18, 2011.
DOI : 10.1038/bcj.2011.31

F. Delhommeau, S. Dupont, V. Della, C. James, S. Trannoy et al., in Myeloid Cancers, TET2 in myeloid cancers, pp.2289-2301, 2009.
DOI : 10.1056/NEJMoa0810069

A. Dunbar, L. Gondek, O. Keefe, C. Makishima, H. Rataul et al., 250K Single Nucleotide Polymorphism Array Karyotyping Identifies Acquired Uniparental Disomy and Homozygous Mutations, Including Novel Missense Substitutions of c-Cbl, in Myeloid Malignancies, Cancer Research, vol.68, issue.24, pp.25010349-10357, 2008.
DOI : 10.1158/0008-5472.CAN-08-2754

T. Ernst, A. Chase, J. Score, C. Hidalgo-curtis, C. Bryant et al., Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders, Nature Genetics, vol.8, issue.8, pp.722-726, 2010.
DOI : 10.1016/j.molcel.2008.10.016

V. Gelsi-boyer, V. Trouplin, J. Adélaide, J. Bonansea, N. Cervera et al., in myelodysplastic syndromes and chronic myelomonocytic leukaemia, British Journal of Haematology, vol.279, issue.Suppl, pp.788-800, 2009.
DOI : 10.1111/j.1365-2141.2009.07697.x

G. Nikoloski, S. Langemeijer, R. Kuiper, R. Knops, M. Massop et al., Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes, Nature Genetics, vol.647, issue.8, pp.665-667, 2010.
DOI : 10.1038/ng.414

L. Ding, T. Ley, D. Larson, C. Miller, D. Koboldt et al., Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing, Nature, vol.115, issue.7382, pp.506-510, 2012.
DOI : 10.1038/nature10738

M. Li, R. Collins, Y. Jiao, P. Ouillette, D. Bixby et al., Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia, Blood, vol.118, issue.22, pp.5914-5917, 2011.
DOI : 10.1182/blood-2011-05-356204

E. Mardis, L. Ding, D. Dooling, D. Larson, M. Mclellan et al., Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome, New England Journal of Medicine, vol.361, issue.11, pp.1058-1066, 2009.
DOI : 10.1056/NEJMoa0903840

E. Papaemmanuil, M. Cazzola, J. Boultwood, L. Malcovati, P. Vyas et al., Mutation in Myelodysplasia with Ring Sideroblasts, New England Journal of Medicine, vol.365, issue.15, pp.1384-1395, 2011.
DOI : 10.1056/NEJMoa1103283

G. Van-haaften, G. Dalgliesh, H. Davies, L. Chen, G. Bignell et al., Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer, Nature Genetics, vol.73, issue.5, pp.521-523, 2009.
DOI : 10.1038/ng1950

V. Visconte, H. Makishima, A. Jankowska, H. Szpurka, F. Traina et al., SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts, Leukemia, vol.41, issue.3, pp.542-545, 2011.
DOI : 10.1038/leu.2011.232

X. Yan, J. Xu, Z. Gu, C. Pan, G. Lu et al., Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia, Nature Genetics, vol.75, issue.4, pp.309-315, 2011.
DOI : 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

K. Yoshida, M. Sanada, Y. Shiraishi, D. Nowak, Y. Nagata et al., Frequent pathway mutations of splicing machinery in myelodysplasia, Nature, vol.451, issue.7367, pp.64-69, 2011.
DOI : 10.1038/nature10496

Y. Yamashita, J. Yuan, I. Suetake, H. Suzuki, Y. Ishikawa et al., Array-based genomic resequencing of human leukemia, Oncogene, vol.2008, issue.25, pp.3723-3731, 2010.
DOI : 10.1182/blood.V97.8.2434

A. Jankowska, H. Makishima, R. Tiu, H. Szpurka, Y. Huang et al., Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A, Blood, vol.118, issue.14, pp.3932-3941, 2011.
DOI : 10.1182/blood-2010-10-311019

R. Levine, C. Belisle, M. Wadleigh, D. Zahrieh, S. Lee et al., X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis, Blood, vol.107, issue.10, pp.4139-4141, 2006.
DOI : 10.1182/blood-2005-09-3900

E. Lippert, M. Boissinot, R. Kralovics, F. Girodon, I. Dobo et al., The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera, Blood, vol.108, issue.6, pp.1865-1867, 2006.
DOI : 10.1182/blood-2006-01-013540

V. Gelsi-boyer, V. Trouplin, J. Roquain, J. Adélaide, N. Carbuccia et al., ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia, British Journal of Haematology, vol.114, issue.4, pp.1365-375, 2010.
DOI : 10.1111/j.1365-2141.2010.08381.x

URL : https://hal.archives-ouvertes.fr/hal-00580698

M. Brecqueville, J. Rey, F. Bertucci, E. Coppin, P. Finetti et al., in myeloproliferative neoplasms, Genes, Chromosomes and Cancer, vol.478, issue.8, pp.743-755, 2012.
DOI : 10.1002/gcc.21960

F. Damm, O. Kosmider, V. Gelsi-boyer, A. Renneville, N. Carbuccia et al., Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes, Blood, vol.119, issue.14, pp.3211-3218, 2012.
DOI : 10.1182/blood-2011-12-400994

T. Graubert, D. Shen, L. Ding, T. Okeyo-owuor, C. Lunn et al., Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes, MJ: Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes, pp.53-57, 2011.
DOI : 10.1038/leu.2010.61

T. Lasho, C. Finke, C. Hanson, T. Jimma, R. Knudson et al., SF3B1 mutations in primary myelofibrosis: clinical, histopathology and genetic correlates among 155 patients, Leukemia, vol.3, issue.5, pp.1135-1137, 2011.
DOI : 10.1038/leu.2011.320

H. Makishima, V. Visconte, H. Sakaguchi, A. Jankowska, K. Abu et al., Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis, Blood, vol.119, issue.14, pp.3203-3210, 2012.
DOI : 10.1182/blood-2011-12-399774

F. Thol, S. Kade, C. Schlarmann, P. Loffeld, M. Morgan et al., Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes, Blood, vol.119, issue.15, pp.3578-3584, 2012.
DOI : 10.1182/blood-2011-12-399337

A. Jankowska and H. Szpurka, Mutational Determinants of Epigenetic Instablity in Myeloid Malignancies, Seminars in Oncology, vol.39, issue.1, pp.80-96, 2012.
DOI : 10.1053/j.seminoncol.2011.11.006

C. Haferlach, V. Grossmann, A. Kohlmann, S. Schindela, W. Kern et al., Deletion of the tumor-suppressor gene NF1 occurs in 5% of myeloid malignancies and is accompanied by a mutation in the remaining allele in half of the cases, Leukemia, vol.26, issue.4, pp.834-839, 2011.
DOI : 10.1038/sj.leu.2404033

B. Parkin, P. Ouillette, Y. Wang, Y. Liu, W. Wright et al., NF1 Inactivation in Adult Acute Myelogenous Leukemia, Clinical Cancer Research, vol.16, issue.16, pp.14135-4147, 2010.
DOI : 10.1158/1078-0432.CCR-09-2639

V. Gelsi-boyer, V. Trouplin, J. Adélaide, N. Aceto, R. V. Pinson et al., Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1genes, BMC Cancer, vol.46, issue.1, pp.299-314, 2008.
DOI : 10.1002/gcc.20426

P. Greif, S. Eck, N. Konstandin, A. Benet-pages, B. Ksienzyk et al., Identification of recurring tumor-specific somatic mutations in acute myeloid leukemia by transcriptome sequencing, Leukemia, vol.54, issue.5, pp.821-827, 2011.
DOI : 10.1016/j.cell.2009.06.016

J. Adélaide, V. Gelsi-boyer, J. Rocquain, N. Carbuccia, D. Birnbaum et al., Gain of CBL-interacting protein, a possible alternative to CBL mutations in myeloid malignancies, Leukemia, vol.7, issue.8, pp.1539-1541, 2010.
DOI : 10.1038/ng.391

F. Grand, C. Hidalgo-curtis, T. Ernst, K. Zoi, C. Zoi et al., Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms, Blood, vol.113, issue.24, pp.6182-6192, 2009.
DOI : 10.1182/blood-2008-12-194548

H. Makishima, H. Cazzolli, H. Szpurka, A. Dunbar, R. Tiu et al., Family Members Constitute a Novel Common Pathogenic Lesion in Myeloid Malignancies, Journal of Clinical Oncology, vol.27, issue.36, pp.6109-6116, 2009.
DOI : 10.1200/JCO.2009.23.7503

J. Score, C. Hidalgo-curtis, A. Jones, N. Winkelmann, A. Skinner et al., Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms, Blood, vol.119, issue.5, pp.1208-1213, 2011.
DOI : 10.1182/blood-2011-07-367243

C. Haferlach, U. Bacher, S. Schnittger, T. Alpermann, M. Zenger et al., ETV6 rearrangements are recurrent in myeloid malignancies and are frequently associated with other genetic events, Genes, Chromosomes and Cancer, vol.49, issue.4, pp.328-337, 2012.
DOI : 10.1002/gcc.21918

H. Cechova, P. Lassuthova, L. Novakova, M. Belickova, R. Stemberkova et al., Monitoring of methylation changes in 9p21 region in patients with myelodysplastic syndromes and acute myeloid leukemia, Neoplasma, vol.59, issue.02, pp.168-174, 2012.
DOI : 10.4149/neo_2012_022

R. Aucagne, N. Droin, J. Paggetti, B. Lagrange, A. Largeot et al., Transcription intermediary factor 1?? is a tumor suppressor in mouse and human chronic myelomonocytic leukemia, Journal of Clinical Investigation, vol.121, issue.6, pp.2361-2370, 2011.
DOI : 10.1172/JCI45213DS1

T. Liu, M. Becker, J. Jelinek, W. Wu, M. Deng et al., Chromosome 5q deletion and epigenetic suppression of the gene encoding ??-catenin (CTNNA1) in myeloid cell transformation, Nature Medicine, vol.66, issue.1, pp.78-83, 2007.
DOI : 10.1038/nm1512

K. Brakensiek, F. Langer, B. Schlegelberger, H. Kreipe, and U. Lehmann, Hypermethylation of the suppressor of cytokine signalling-1 (SOCS-1) in myelodysplastic syndrome, British Journal of Haematology, vol.163, issue.2, pp.209-217, 2005.
DOI : 10.1038/88225

M. Mcdevitt, Clinical Applications of Epigenetic Markers and Epigenetic Profiling in Myeloid Malignancies, Seminars in Oncology, vol.39, issue.1, pp.109-122, 2012.
DOI : 10.1053/j.seminoncol.2011.11.003

R. Bejar, K. Stevenson, O. Abdel-wahab, N. Galili, B. Nilsson et al., Clinical Effect of Point Mutations in Myelodysplastic Syndromes, New England Journal of Medicine, vol.364, issue.26, pp.2496-2506, 2011.
DOI : 10.1056/NEJMoa1013343

T. Ley, E. Mardis, L. Ding, B. Fulton, M. Mclellan et al., DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome, Nature, vol.99, issue.7218, pp.66-72, 2008.
DOI : 10.1038/nature07485

T. Klampfl, A. Harutyunyan, T. Berg, B. Gisslinger, M. Schalling et al., Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression, Blood, vol.118, issue.1, pp.167-176, 2011.
DOI : 10.1182/blood-2011-01-331678

P. Van-vlierberghe, J. Patel, O. Abdel-wahab, C. Lobry, C. Hedvat et al., PHF6 mutations in adult acute myeloid leukemia, PHF6 mutations in adult acute myeloid leukemia, pp.130-134, 2011.
DOI : 10.1002/pbc.22574

F. Damm, T. Bunke, F. Thol, M. B. Wagner, K. Gohring et al., Prognostic implications and molecular associations of NADH dehydrogenase subunit 4 (ND4) mutations in acute myeloid leukemia, Prognostic implications and molecular associations of NADH dehydrogenase subunit 4 (ND4) mutations in acute myeloid leukemia, pp.289-295, 2012.
DOI : 10.1038/sj.onc.1204646

J. Rocquain, V. Gelsi-boyer, J. Adélaide, A. Murati, N. Carbuccia et al., Alteration of cohesin genes in myeloid diseases, American Journal of Hematology, vol.85, issue.9, pp.717-719, 2010.
DOI : 10.1002/ajh.21798

N. Cheung and C. So, Transcriptional and epigenetic networks in haematological malignancy, FEBS Letters, vol.468, issue.13, pp.2100-2111, 2011.
DOI : 10.1016/j.febslet.2011.03.068

A. Peters and J. Schwaller, Epigenetic Mechanisms in Acute Myeloid Leukemia, Prog Drug Res, vol.67, pp.197-219, 2011.
DOI : 10.1007/978-3-7643-8989-5_10

G. Dalgliesh, K. Furge, C. Greenman, L. Chen, G. Bignell et al., Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes, Nature, vol.6, issue.7279, pp.360-363, 2010.
DOI : 10.1038/nature08672

I. Varela, P. Tarpey, K. Raine, D. Huang, C. Ong et al., Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma, Nature, vol.133, issue.7331, pp.539-542, 2011.
DOI : 10.1038/nature09639

M. Figueroa, O. Abdel-wahab, C. Lu, P. Ward, J. Patel et al., Leukemic IDH1 and IDH2 Mutations Result in??a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation, Cancer Cell, vol.18, issue.6, pp.553-567, 2010.
DOI : 10.1016/j.ccr.2010.11.015

L. Dang, D. White, S. Gross, B. Bennett, M. Bittinger et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, vol.462, issue.7300, p.966, 2010.
DOI : 10.1038/nature09132

P. Ward, J. Patel, D. Wise, O. Abdel-wahab, B. Bennett et al., The Common Feature of Leukemia-Associated IDH1 and IDH2 Mutations Is a Neomorphic Enzyme Activity Converting ??-Ketoglutarate to 2-Hydroxyglutarate, Cancer Cell, vol.17, issue.3, pp.225-234, 2010.
DOI : 10.1016/j.ccr.2010.01.020

M. Tahiliani, K. Koh, Y. Shen, W. Pastor, H. Bandukwala et al., Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1, Science, vol.324, issue.5929, pp.930-935, 2009.
DOI : 10.1126/science.1170116

L. Cimmino, O. Abdel-wahab, and R. Levine, TET Family Proteins and Their Role in Stem Cell Differentiation and Transformation, Cell Stem Cell, vol.9, issue.3, pp.193-204, 2011.
DOI : 10.1016/j.stem.2011.08.007

S. Ito, L. Shen, Q. Dai, S. Wu, L. Collins et al., Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine, Science, vol.333, issue.6047, pp.1300-1303, 2011.
DOI : 10.1126/science.1210597

K. Williams, J. Christensen, M. Pedersen, J. Johansen, P. Cloos et al., TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity, Nature, vol.38, issue.7347, pp.343-348, 2011.
DOI : 10.1038/nature10066

Y. Tsukada, J. Fang, H. Erdjument-bromage, M. Warren, C. Borchers et al., Histone demethylation by a family of JmjC domain-containing proteins, Nature, vol.439, issue.7078, pp.811-816, 2006.
DOI : 10.1016/0160-5402(82)90004-3

K. Moran-crusio, L. Reavie, A. Shih, O. Abdel-wahab, D. Ndiaye-lobry et al., Tet2 Loss Leads to Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation, Cancer Cell, vol.20, issue.1, pp.11-24, 2011.
DOI : 10.1016/j.ccr.2011.06.001

C. Quivoron, L. Couronne, V. Della, C. Lopez, I. Plo et al., TET2 Inactivation Results in Pleiotropic Hematopoietic Abnormalities in Mouse and Is??a Recurrent Event during Human Lymphomagenesis, TET2 Inactivation Results in Pleiotropic Hematopoietic Abnormalities in Mouse and Is a Recurrent Event during Human Lymphomagenesis, pp.25-38, 2011.
DOI : 10.1016/j.ccr.2011.06.003

E. Vire, C. Brenner, R. Deplus, L. Blanchon, M. Fraga et al., The Polycomb group protein EZH2 directly controls DNA methylation, Nature, vol.439, issue.7078, pp.871-874, 2006.
DOI : 10.1038/sj.emboj.7600509

G. Challen, D. Sun, M. Jeong, M. Luo, J. Jelinek et al., Dnmt3a is essential for hematopoietic stem cell differentiation, Nature Genetics, vol.75, issue.1, pp.23-31, 2012.
DOI : 10.1182/blood-2007-11-126227

G. Ficz, M. Branco, S. Seisenberger, F. Santos, F. Krueger et al., Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation, Nature, vol.10, issue.7347, pp.398-402, 2011.
DOI : 10.1038/nature10008

H. Wu, D. 'alessio, A. Ito, S. Xia, K. Wang et al., Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells, Nature, vol.18, issue.7347, pp.389-393, 2011.
DOI : 10.1038/nature09934

T. Li, J. Hu, X. Qiu, J. Ling, H. Chen et al., CTCF Regulates Allelic Expression of Igf2 by Orchestrating a Promoter-Polycomb Repressive Complex 2 Intrachromosomal Loop, Molecular and Cellular Biology, vol.28, issue.20, pp.6473-6482, 2008.
DOI : 10.1128/MCB.00204-08

C. Beisel and R. Paro, Silencing chromatin: comparing modes and mechanisms, Nature Reviews Genetics, vol.438, issue.2, pp.123-135, 2011.
DOI : 10.1038/nrg2932

T. Ntziachristosp, P. Vlierberghe, J. Nedjic, T. Trimarchi, M. Flaherty et al., Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia, Nature Medicine, vol.12, issue.2, pp.298-303, 2012.
DOI : 10.1038/leu.2011.93

H. Oguro, J. Yuan, S. Tanaka, S. Miyagi, M. Mochizuki-kashio et al., -deficient hematopoietic cells unveils a tumor suppressor function of the polycomb group genes, The Journal of Experimental Medicine, vol.209, issue.3, pp.445-454, 2012.
DOI : 10.1038/leu.2011.85

URL : https://hal.archives-ouvertes.fr/jpa-00254906

M. Brecqueville, J. Adélaide, F. Bertucci, P. Finetti, M. Chaffanet et al., Alterations of polycomb gene BMI1 in human myeloproliferative neoplasms, Cell Cycle, vol.11, issue.16, 2012.
DOI : 10.1016/j.cancergencyto.2007.03.009

J. Simon and R. Kingston, Mechanisms of Polycomb gene silencing: knowns and unknowns, Nature Reviews Molecular Cell Biology, vol.26, pp.697-708, 2009.
DOI : 10.1038/nrm2763

Y. Jiao, C. Shi, B. Edil, R. De-wilde, D. Klimstra et al., DAXX/ATRX, MEN1, and mTOR Pathway Genes Are Frequently Altered in Pancreatic Neuroendocrine Tumors, Papadopoulos N: DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors, pp.1199-1203, 2011.
DOI : 10.1126/science.1200609

J. Schwartzentruber, A. Korshunov, X. Liu, D. Jones, E. Pfaff et al., Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma, N: Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma, pp.226-231, 2012.
DOI : 10.1038/nature10833

A. Berger and P. Pandolfi, Haplo-insufficiency: a driving force in cancer, The Journal of Pathology, vol.100, issue.2, pp.137-146, 2011.
DOI : 10.1002/path.2800

C. Acquaviva, V. Gelsi-boyer, and D. Birnbaum, Myelodysplastic syndromes: lost between two states?, Leukemia, vol.647, issue.1, pp.1-5, 2010.
DOI : 10.1182/blood-2008-12-194548

K. Isono, Y. Mizutani-koseki, T. Komori, M. Schmidt-zachmann, and H. Koseki, Mammalian Polycomb-mediated repression of Hox genes requires the essential spliceosomal protein Sf3b1, Genes & Development, vol.19, issue.5, pp.536-541, 2005.
DOI : 10.1101/gad.1284605

R. Luco, Q. Pan, K. Tominaga, B. Blencowe, O. Pereira-smith et al., Regulation of Alternative Splicing by Histone Modifications, Science, vol.327, issue.5968, pp.996-1000, 2010.
DOI : 10.1126/science.1184208

R. Kralovics, Genetic complexity of myeloproliferative neoplasms Leukemia, pp.1841-1848, 2008.

A. Pardanani, T. Lasho, C. Finke, S. Oh, J. Gotlib et al., LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations, Leukemia, vol.118, issue.10, pp.1713-1718, 2010.
DOI : 10.1158/0008-5472.CAN-09-3783

A. Pardanani, R. Levine, T. Lasho, Y. Pikman, R. Mesa et al., MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients, Blood, vol.108, issue.10, pp.3472-3476, 2006.
DOI : 10.1182/blood-2006-04-018879

S. Abbas, G. Rotmans, B. Lowenberg, and P. Valk, Exon 8 splice site mutations in the gene encoding the E3-ligase CBL are associated with core binding factor acute myeloid leukemias, Haematologica, vol.93, issue.10, pp.1595-1597, 2008.
DOI : 10.3324/haematol.13187

N. Carbuccia, V. Trouplin, V. Gelsi-boyer, A. Murati, J. Rocquain et al., Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias, Leukemia, vol.24, issue.2, pp.469-473, 2010.
DOI : 10.1056/NEJMoa041974

J. Rocquain, N. Carbuccia, V. Trouplin, S. Raynaud, A. Murati et al., Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias, BMC Cancer, vol.115, issue.1, pp.401-405, 2010.
DOI : 10.1182/blood-2009-07-230698

Y. Shen, Y. Zhu, X. Fan, J. Shi, Q. Wang et al., Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia, Blood, vol.118, issue.20, pp.5593-5603, 2011.
DOI : 10.1182/blood-2011-03-343988

F. Bernard, V. Gelsi-boyer, A. Murati, S. Giraudier, V. Trouplin et al., Alterations of NFIA in chronic malignant myeloid diseases, Leukemia, vol.6, issue.3, pp.583-585, 2009.
DOI : 10.1016/S0301-472X(01)00789-5

F. Damm, M. Fontenay, and O. Bernard, Point mutations in myelodysplastic syndromes, N Engl J Med, vol.365, pp.1154-1155, 2011.

J. Fortier and T. Graubert, Murine Models of Human Acute Myeloid Leukemia, Cancer Treat Res, vol.145, pp.183-196, 2010.
DOI : 10.1007/978-0-387-69259-3_11

E. Mccormack, O. Bruserud, and B. Gjertsen, Animal models of acute myelogenous leukaemia ??? development, application and future perspectives, Leukemia, vol.21, issue.5, pp.687-706, 2005.
DOI : 10.1038/sj.leu.2403670

E. Pronier, C. Quivoron, O. Bernard, and J. Villeval, (1)F/TET2 mutations: does the order matter? Haematologica, pp.2-638, 2011.

M. Walter, D. Shen, L. Ding, J. Shao, D. Koboldt et al., Clonal Architecture of Secondary Acute Myeloid Leukemia, New England Journal of Medicine, vol.366, issue.12, pp.1090-1098, 2012.
DOI : 10.1056/NEJMoa1106968

E. Passegue, C. Jamieson, L. Ailles, and I. Weissman, Normal and leukemic hematopoiesis: Are leukemias a stem cell disorder or a reacquisition of stem cell characteristics?, Proceedings of the National Academy of Sciences, vol.100, issue.Supplement 1, pp.11842-11849, 2003.
DOI : 10.1073/pnas.2034201100

J. Lambert, T. Everington, D. Linch, and R. Gale, In essential thrombocythemia, multiple JAK2-V617F clones are present in most mutant-positive patients: a new disease paradigm, Blood, vol.114, issue.14, pp.3018-3023, 2009.
DOI : 10.1182/blood-2009-03-209916

D. Gilliland, Molecular genetics of human leukemias: New insights into therapy, Seminars in Hematology, vol.39, issue.4, pp.6-11, 2002.
DOI : 10.1053/shem.2002.36921

M. Dawson, A. Bannister, B. Gottgens, S. Foster, T. Bartke et al., JAK2 phosphorylates histone H3Y41 and excludes HP1?? from chromatin, Nature, vol.412, issue.7265, pp.819-822, 2009.
DOI : 10.1038/nature08448

R. Bejar, R. Levine, and B. Ebert, Unraveling the Molecular Pathophysiology of Myelodysplastic Syndromes, Journal of Clinical Oncology, vol.29, issue.5, pp.504-515, 2011.
DOI : 10.1200/JCO.2010.31.1175

H. Makishima, A. Jankowska, M. Mcdevitt, O. Keefe, C. Dujardin et al., CBL, CBLB, TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia, pp.198-206, 2011.
DOI : 10.1182/blood-2010-06-292433

C. Roche-lestienne, A. Marceau, E. Labis, O. Nibourel, V. Coiteux et al., Mutation analysis of TET2, IDH1, IDH2 and ASXL1 in chronic myeloid leukemia, Leukemia, vol.25, issue.10, pp.1661-1664, 2011.
DOI : 10.1038/leu.2010.65

T. Haferlach, A. Kohlmann, L. Wieczorek, G. Basso, G. Kronnie et al., Clinical Utility of Microarray-Based Gene Expression Profiling in the Diagnosis and Subclassification of Leukemia: Report From the International Microarray Innovations in Leukemia Study Group, Journal of Clinical Oncology, vol.28, issue.15, pp.2529-2537, 2010.
DOI : 10.1200/JCO.2009.23.4732

N. Vey, M. Mozziconacci, A. Groulet-martinec, S. Debono, P. Finetti et al., Identification of new classes among acute myelogenous leukaemias with normal karyotype using gene expression profiling, Oncogene, vol.23, issue.58, pp.9381-9391, 2004.
DOI : 10.1038/sj.onc.1207910

M. Figueroa, S. Lugthart, Y. Li, C. Erpelinck-verschueren, X. Deng et al., DNA Methylation Signatures Identify Biologically Distinct Subtypes in Acute Myeloid Leukemia, Cancer Cell, vol.17, issue.1, pp.13-27, 2010.
DOI : 10.1016/j.ccr.2009.11.020

J. Boultwood, J. Perry, R. Zaman, C. Fernandez-santamaria, T. Littlewood et al., High-density single nucleotide polymorphism array analysis and ASXL1 gene mutation screening in chronic myeloid leukemia during disease progression, Leukemia, vol.16, issue.6, pp.1139-1145, 2010.
DOI : 10.1073/pnas.95.21.12410

W. Chou, H. Huang, H. Hou, C. Chen, J. Tang et al., Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations, Blood, vol.116, issue.20, pp.4086-4094, 2010.
DOI : 10.1182/blood-2010-05-283291

F. Thol, I. Friesen, F. Damm, H. Yun, E. Weissinger et al., Mutations in Patients With Myelodysplastic Syndromes, Journal of Clinical Oncology, vol.29, issue.18, pp.2499-2506, 2011.
DOI : 10.1200/JCO.2010.33.4938

B. Stein, D. Williams, O. Keefe, C. Rogers, O. Ingersoll et al., Disruption of the ASXL1 gene is frequent in primary, post-essential thrombocytosis and post-polycythemia vera myelofibrosis, but not essential thrombocytosis or polycythemia vera: analysis of molecular genetics and clinical phenotypes, Haematologica, vol.96, issue.10, pp.1462-1469, 2011.
DOI : 10.3324/haematol.2011.045591

O. Kosmider, V. Gelsi-boyer, M. Cheok, S. Grabar, V. Della-valle et al., TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs), Blood, vol.114, issue.15, pp.23285-3291, 2009.
DOI : 10.1182/blood-2009-04-215814

K. Metzeler, K. Maharry, M. Radmacher, K. Mrozek, D. Margeson et al., Mutations Improve the New European LeukemiaNet Risk Classification of Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study, Journal of Clinical Oncology, vol.29, issue.10, pp.21373-1381, 2011.
DOI : 10.1200/JCO.2010.32.7742

O. Nibourel, O. Kosmider, M. Cheok, N. Boissel, A. Renneville et al., Incidence and prognostic value of TET2 alterations in de novo acute myeloid leukemia achieving complete remission, Blood, vol.116, issue.7, pp.1132-1135, 2010.
DOI : 10.1182/blood-2009-07-234484

J. Patel, M. Gonen, M. Figueroa, H. Fernandez, Z. Sun et al., Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia, New England Journal of Medicine, vol.366, issue.12, pp.1079-1089, 2012.
DOI : 10.1056/NEJMoa1112304

C. Harrison, J. Kiladjian, A. , H. Gisslinger, H. Waltzman et al., JAK Inhibition with Ruxolitinib versus Best Available Therapy for Myelofibrosis, New England Journal of Medicine, vol.366, issue.9, pp.787-798, 2012.
DOI : 10.1056/NEJMoa1110556

A. Pardanani and A. Tefferi, Targeting myeloproliferative neoplasms with JAK inhibitors, Current Opinion in Hematology, vol.18, issue.2, pp.105-110, 2011.
DOI : 10.1097/MOH.0b013e3283439964

S. Verstovsek, R. Mesa, J. Gotlib, R. Levy, V. Gupta et al., A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis, New England Journal of Medicine, vol.366, issue.9, pp.799-807, 2012.
DOI : 10.1056/NEJMoa1110557

L. Wang, A. Gural, X. Sun, X. Zhao, F. Perna et al., The Leukemogenicity of AML1-ETO Is Dependent on Site-Specific Lysine Acetylation, Science, vol.333, issue.6043, pp.765-769, 2011.
DOI : 10.1126/science.1201662

R. Itzykson, O. Kosmider, T. Cluzeau, M. Mansat-de, F. Dreyfus et al., Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias, Leukemia, vol.116, issue.7, pp.1147-1152, 2011.
DOI : 10.1038/ng.621

D. Pollyea, A. Raval, B. Kusler, J. Gotlib, A. Alizadeh et al., Impact of TET2 mutations on mRNA expression and clinical outcomes in MDS patients treated with DNA methyltransferase inhibitors, Hematological Oncology, vol.29, issue.3, pp.157-160, 2010.
DOI : 10.1002/hon.976

A. Yokoi, Y. Kotake, K. Takahashi, T. Kadowaki, Y. Matsumoto et al., Biological validation that SF3b is a target of the antitumor macrolide pladienolide, FEBS Journal, vol.3, issue.Suppl 1, pp.4870-4880, 2011.
DOI : 10.1111/j.1742-4658.2011.08387.x

R. Amson, S. Pece, A. Lespagnol, R. Vyas, G. Mazzarol et al., Reciprocal repression between P53 and TCTP, Nature Medicine, vol.9, issue.1, pp.91-99, 2012.
DOI : 10.1073/pnas.0400177101

V. Bykov, N. Issaeva, A. Shilov, M. Hultcrantz, E. Pugacheva et al., Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound, Nature Medicine, vol.8, issue.3, pp.282-288, 2002.
DOI : 10.1038/nm0302-282

S. Roychowdhury and M. Talpaz, Managing resistance in chronic myeloid leukemia, Blood Reviews, vol.25, issue.6, pp.279-290, 2011.
DOI : 10.1016/j.blre.2011.09.001

D. Chan and A. Giaccia, Harnessing synthetic lethal interactions in anticancer drug discovery, Nature Reviews Drug Discovery, vol.107, issue.5, pp.351-364, 2011.
DOI : 10.1038/nrd3374

F. Eisinger, H. Sobol, and D. Birnbaum, Hypothesis: more mutations to cure cancer?, Oncology Reports, vol.6, pp.1189-1190, 1999.
DOI : 10.3892/or.6.6.1189