P. Andrey and P. Tarroux, Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.3, pp.252-262, 1998.
DOI : 10.1109/34.667883

J. Besag, Spatial interaction and statistical-analysis of lattice systems, J. Roy. Statist. Soc. Ser. B ? Methodol, vol.36, pp.192-236, 1974.

J. Besag, Statistical analysis of dirty pictures*, Journal of Applied Statistics, vol.6, issue.5-6, pp.259-302, 1986.
DOI : 10.1016/0031-3203(83)90012-2

J. Canny, A computational approach to edge-detection, IEEE Trans. Pattern Anal. Machine Intell, vol.8, pp.679-698, 1986.
DOI : 10.1109/tpami.1986.4767851

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. T. Chard, G. J. Parker, C. M. Griffin, A. J. Thompson, and D. H. Miller, The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology, Journal of Magnetic Resonance Imaging, vol.15, issue.3, pp.259-267, 2002.
DOI : 10.1002/jmri.10064

Y. Z. Cheng, Mean shift, mode seeking, and clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, issue.8, pp.790-799, 1995.
DOI : 10.1109/34.400568

L. P. Clarke, R. P. Velthuizen, M. A. Camacho, J. J. Heine, M. Vaidyanathan et al., MRI segmentation: Methods and applications, Magnetic Resonance Imaging, vol.13, issue.3, pp.343-368, 1995.
DOI : 10.1016/0730-725X(94)00124-L

D. Comaniciu and P. Meer, Mean shift: a robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.5, pp.603-619, 2002.
DOI : 10.1109/34.1000236

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Comaniciu, V. Ramesh, and P. Meer, The variable bandwidth mean shift and data-driven scale selection, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp.438-445, 2001.
DOI : 10.1109/ICCV.2001.937550

X. Descombes and F. Kruggel, A Markov pixon information approach for low-level image description, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, issue.6, pp.482-494, 1999.
DOI : 10.1109/34.771311

K. Fukunaga and L. Hostetler, The estimation of the gradient of a density function, with applications in pattern recognition, IEEE Transactions on Information Theory, vol.21, issue.1, pp.32-40, 1975.
DOI : 10.1109/TIT.1975.1055330

J. Hammersley and P. Clifford, Markov fields on finite graphs and lattices, 1971.

M. Hasanzadeh and S. Kasaei, Fuzzy Image Segmentation Using Membership Connectedness, EURASIP Journal on Advances in Signal Processing, vol.2008, 2008.
DOI : 10.1109/TNN.2007.891635

URL : http://doi.org/10.1155/2008/417293

K. Held, E. R. Kops, B. J. Krause, W. M. Wells, R. Kikinis et al., Markov random field segmentation of brain MR images, IEEE Transactions on Medical Imaging, vol.16, issue.6, pp.878-886, 1997.
DOI : 10.1109/42.650883

M. Ibrahim, N. John, M. Kabuka, and A. Younis, Hidden Markov models-based 3D MRI brain segmentation, Image and Vision Computing, vol.24, issue.10, pp.1065-1079, 2006.
DOI : 10.1016/j.imavis.2006.03.001

J. R. Jimenez-alaniz, V. Medina-banuelos, and O. Yanez-suarez, Data-driven brain MRI segmentation supported on edge confidence and a priori tissue information, IEEE Transactions on Medical Imaging, vol.25, issue.1, pp.74-83, 2006.
DOI : 10.1109/TMI.2005.860999

M. Kamber, R. Shinghal, D. L. Collins, G. S. Francis, and A. C. Evans, Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images, IEEE Transactions on Medical Imaging, vol.14, issue.3, pp.442-453, 1995.
DOI : 10.1109/42.414608

Z. Kato, J. Zerubia, and M. Berthod, Unsupervised parallel image classification using Markovian models. Pattern Recogn, pp.591-604, 1999.
DOI : 10.1016/s0031-3203(98)00104-6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Lecoeur and C. Barillot, Brain Image Segmentation: State of the Art, INRIA Research Report, issue.6306, 2007.

L. Lin, L. T. Zhu, F. G. Yang, and T. Z. Jiang, A novel pixon-representation for image segmentation based on Markov random field, Image and Vision Computing, vol.26, issue.11, pp.1507-1514, 2008.
DOI : 10.1016/j.imavis.2008.04.013

A. Mayer and H. Greenspan, Segmentation of brain MRI by adaptive mean shift, 3rd IEEE Internat. Symp. on Biomedical Imaging: Macro to Nano, pp.319-322, 2006.

F. B. Mohamed, S. Vinitski, S. H. Faro, C. F. Gonzalez, J. Mack et al., Optimization of tissue segmentation of brain MR images based on multispectral 3D feature maps, Magnetic Resonance Imaging, vol.17, issue.3, pp.403-409, 1999.
DOI : 10.1016/S0730-725X(98)00181-7

F. B. Mohamed, S. Vinitski, C. F. Gonzalez, S. H. Faro, F. A. Lublin et al., Increased differentiation of intracranial white matter lesions by multispectral 3D-tissue segmentation: preliminary results, Magnetic Resonance Imaging, vol.19, issue.2, pp.207-218, 2001.
DOI : 10.1016/S0730-725X(01)00291-0

S. D. Olabarriaga and A. W. Smeulders, Interaction in the segmentation of medical images: A survey, Medical Image Analysis, vol.5, issue.2, pp.127-142, 2001.
DOI : 10.1016/S1361-8415(00)00041-4

T. N. Pappas, An adaptive clustering algorithm for image segmentation, IEEE Transactions on Signal Processing, vol.40, issue.4, pp.901-914, 1992.
DOI : 10.1109/78.127962

D. L. Pham and J. L. Prince, Adaptive fuzzy segmentation of magnetic resonance images, IEEE Transactions on Medical Imaging, vol.18, issue.9, pp.737-752, 1999.
DOI : 10.1109/42.802752

D. L. Pham, C. Xu, and J. L. Prince, Current Methods in Medical Image Segmentation, Annual Review of Biomedical Engineering, vol.2, issue.1, pp.315-337, 2000.
DOI : 10.1146/annurev.bioeng.2.1.315

R. K. Pina and R. C. Puetter, Bayesian image reconstruction - The pixon and optimal image modeling, Publications of the Astronomical Society of the Pacific, vol.105, pp.630-637, 1993.
DOI : 10.1086/133207

K. A. Pohl, J. Fisher, W. E. Grimson, R. Kikinis, and W. M. Wells, A Bayesian model for joint segmentation and registration, NeuroImage, vol.31, issue.1, pp.228-239, 2006.
DOI : 10.1016/j.neuroimage.2005.11.044

M. Rivera, O. Ocegueda, and J. L. Marroquin, Entropy-Controlled Quadratic Markov Measure Field Models for Efficient Image Segmentation, IEEE Transactions on Image Processing, vol.16, issue.12, pp.3047-3057, 2007.
DOI : 10.1109/TIP.2007.909384

A. Rueda, O. Acosta, M. Couprie, P. Bourgeat, J. Fripp et al., Topology-corrected segmentation and local intensity estimates for improved partial volume classification of brain cortex in MRI, Journal of Neuroscience Methods, vol.188, issue.2, pp.305-315, 2010.
DOI : 10.1016/j.jneumeth.2010.02.020

URL : https://hal.archives-ouvertes.fr/inserm-00608891

H. G. Schnack, H. E. Hulshoff, W. F. Baare, M. A. Viergever, and R. S. Kahn, Automatic Segmentation of the Ventricular System from MR Images of the Human Brain, NeuroImage, vol.14, issue.1, pp.95-104, 2001.
DOI : 10.1006/nimg.2001.0800

D. W. Shattuck, S. R. Sandor-leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, Magnetic Resonance Image Tissue Classification Using a Partial Volume Model, NeuroImage, vol.13, issue.5, pp.856-876, 2001.
DOI : 10.1006/nimg.2000.0730

J. B. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Machine Intell, vol.22, pp.888-905, 2000.

M. Y. Siyal and L. Yu, An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI, Pattern Recognition Letters, vol.26, issue.13, pp.2052-2062, 2005.
DOI : 10.1016/j.patrec.2005.03.019

S. M. Smith, Fast robust automated brain extraction, Human Brain Mapping, vol.20, issue.3, pp.143-155, 2002.
DOI : 10.1002/hbm.10062

J. Solomon, J. A. Butman, and A. Sood, Segmentation of brain tumors in 4D MR images using the hidden Markov model, Computer Methods and Programs in Biomedicine, vol.84, issue.2-3, pp.76-85, 2006.
DOI : 10.1016/j.cmpb.2006.09.007

J. Suckling, T. Sigmundsson, K. Greenwood, and E. T. Bullmore, A modified fuzzy clustering algorithm for operator independent brain tissue classification of dual echo MR images, Magnetic Resonance Imaging, vol.17, issue.7, pp.1065-1076, 1999.
DOI : 10.1016/S0730-725X(99)00055-7

H. Tang, E. X. Wu, Q. Y. Ma, D. Gallagher, G. M. Perera et al., MRI brain image segmentation by multi-resolution edge detection and region selection, Computerized Medical Imaging and Graphics, vol.24, issue.6, pp.349-357, 2000.
DOI : 10.1016/S0895-6111(00)00037-9

M. Vaidyanathan, L. P. Clarke, C. Heidtman, and R. P. Velthuizen, Normal brain volume measurements using multispectral MRI segmentation, Magnetic Resonance Imaging, vol.15, issue.1, pp.87-97, 1997.
DOI : 10.1016/S0730-725X(96)00244-5

K. Van-leemput, F. Maes, D. Vandermeulen, and P. Suetens, Automated model-based bias field correction of MR images of the brain, IEEE Transactions on Medical Imaging, vol.18, issue.10, pp.885-896, 1999.
DOI : 10.1109/42.811268

K. Van-leemput, F. Maes, D. Vandermeulen, and P. Suetens, Automated model-based tissue classification of MR images of the brain, IEEE Transactions on Medical Imaging, vol.18, issue.10, pp.897-908, 1999.
DOI : 10.1109/42.811270

K. Van-leemput, F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens, Automated segmentation of multiple sclerosis lesions by model outlier detection, IEEE Transactions on Medical Imaging, vol.20, issue.8, pp.677-688, 2001.
DOI : 10.1109/42.938237

S. Warfield, J. Dengler, J. Zaers, C. R. Guttmann, I. Wells et al., Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesions, Journal of Image Guided Surgery, vol.1, issue.6, pp.326-338, 1995.
DOI : 10.1002/(SICI)1522-712X(1995)1:6<326::AID-IGS4>3.0.CO;2-C

W. M. Wells, W. E. Grimson, R. Kikinis, and F. A. Jolesz, Adaptive segmentation of MRI data, IEEE Transactions on Medical Imaging, vol.15, issue.4, pp.429-442, 1996.
DOI : 10.1109/42.511747

D. J. Withey and Z. J. Koles, A review of medical image segmentation: Methods and software, Internat. J. Bioelectromagn, vol.10, pp.125-148, 2008.

G. Yang and T. Z. Jiang, Pixon-based image segmentation with markov random fields, IEEE Transactions on Image Processing, vol.12, issue.12, pp.1552-1559, 2003.
DOI : 10.1109/TIP.2003.817242

Y. X. Zhou and J. Bai, Atlas-Based Fuzzy Connectedness Segmentation and Intensity Nonuniformity Correction Applied to Brain MRI, IEEE Transactions on Biomedical Engineering, vol.54, issue.1, pp.122-129, 2007.
DOI : 10.1109/TBME.2006.884645

C. Zhu and T. Jiang, Multicontext fuzzy clustering for separation of brain tissues in magnetic resonance images, NeuroImage, vol.18, issue.3, pp.685-696, 2003.
DOI : 10.1016/S1053-8119(03)00006-5

S. C. Zhu and A. Yuille, Region competition: unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation, Proceedings of IEEE International Conference on Computer Vision, pp.884-900, 1996.
DOI : 10.1109/ICCV.1995.466909