A. Sutton, K. Abrams, D. Jones, T. Sheldon, and F. Song, Methods for Meta- Analysis in Medical Research London, 2000.

R. Dersimonian and N. Laird, Meta-analysis in clinical trials, Controlled Clinical Trials, vol.7, issue.3, pp.177-188, 1986.
DOI : 10.1016/0197-2456(86)90046-2

S. Thompson and J. Higgins, How should meta-regression analyses be undertaken and interpreted?, Statistics in Medicine, vol.315, issue.11, pp.1559-1573, 2002.
DOI : 10.1002/sim.1187

M. Parmar, V. Torri, and L. Stewart, Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints, Statistics in Medicine, vol.17, issue.24, pp.2815-2834, 1998.
DOI : 10.1002/(SICI)1097-0258(19981230)17:24<2815::AID-SIM110>3.0.CO;2-8

R. Riley, K. Abrams, A. Sutton, P. Lambert, D. Jones et al., Reporting of prognostic markers: current problems and development of guidelines for evidence-based practice in the future, British Journal of Cancer, vol.88, issue.8, pp.881191-1198, 2003.
DOI : 10.1038/sj.bjc.6600886

M. Simmonds, J. Higgins, L. Stewart, J. Tierney, M. Clarke et al., Meta-analysis of individual patient data from randomized trials: a review of methods used in practice, Clinical Trials, vol.2, issue.3, pp.209-217, 2005.
DOI : 10.1191/1740774505cn087oa

K. Dear, Iterative Generalized Least Squares for Meta-Analysis of Survival Data at Multiple Times, Biometrics, vol.50, issue.4, pp.989-1002, 1994.
DOI : 10.2307/2533438

L. Arends, M. Hunink, and T. Stijnen, Meta-analysis of summary survival curve data, Statistics in Medicine, vol.15, issue.1, pp.4381-4396, 2008.
DOI : 10.1002/sim.3311

M. Fiocco, H. Putter, and J. Van-houwelingen, Meta-analysis of pairs of survival curves under heterogeneity: A Poisson correlated gamma-frailty approach, Statistics in Medicine, vol.24, issue.3, pp.3782-3797, 2009.
DOI : 10.1002/sim.3752

S. Feng, R. Wolfe, and F. Port, Frailty Survival Model Analysis of the National Deceased Donor Kidney Transplant Dataset Using Poisson Variance Structures, Journal of the American Statistical Association, vol.100, issue.471, pp.728-735, 2005.
DOI : 10.1198/016214505000000123

P. Williamson, C. Smith, J. Hutton, and A. Marson, Aggregate data metaanalysis with time-to-event outcomes, pp.3337-3351, 2002.

S. Senn, The Many Modes of Meta, Therapeutic Innovation & Regulatory Science, vol.34, issue.2, pp.535-549, 2000.
DOI : 10.1177/009286150003400222

C. Legrand, V. Ducrocq, P. Janssen, R. Sylvester, and L. Duchateau, A Bayesian approach to jointly estimate centre and treatment by centre heterogeneity in a proportional hazards model, Statistics in Medicine, vol.24, issue.24, pp.3789-3804, 2005.
DOI : 10.1002/sim.2475

F. Siannis, J. Barrett, V. Farewell, and J. Tierney, One-stage parametric metaanalysis of time-to-event outcomes, pp.293030-3045, 2010.

T. Holford, Life Tables with Concomitant Information, Biometrics, vol.32, issue.3, pp.587-597, 1976.
DOI : 10.2307/2529747

J. Whitehead, Fitting Cox's Regression Model to Survival Data using GLIM, Applied Statistics, vol.29, issue.3, pp.268-275, 1980.
DOI : 10.2307/2346901

B. Carstensen, Who needs the Cox model anyway? Tech rep, 2004.

P. Lambert, L. Smith, D. Jones, and J. Botha, Additive and multiplicative covariate regression models for relative survival incorporating fractional polynomials for time-dependent effects, Statistics in Medicine, vol.23, issue.24, pp.3871-3885, 2005.
DOI : 10.1002/sim.2399

D. Cox, Regression Models and Life-Tables, J R Stat Soc B Methodol, vol.1972, issue.342, pp.187-220
DOI : 10.1007/978-1-4612-4380-9_37

J. Higgins, S. Thompson, and D. Spiegelhalter, A re-evaluation of randomeffects meta-analysis, J R, vol.172, pp.137-159, 2009.

R. Riley, J. Higgins, and J. Deeks, Interpretation of random effects meta-analyses, BMJ, vol.342, issue.feb10 2, p.549, 2011.
DOI : 10.1136/bmj.d549

C. Tudur-smith, P. Williamson, and A. Marson, Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes, pp.1307-1319, 2005.

T. Yamaguchi and Y. Ohashi, Investigating centre effects in a multi-centre clinical trial of superficial bladder cancer, pp.1961-1971, 1999.

R. Turner, R. Omar, M. Yang, H. Goldstein, and S. Thompson, A multilevel model framework for meta-analysis of clinical trials with binary outcomes, pp.3417-3432, 2000.

P. Royston and P. Lambert, Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model Stata Press, 2011.

R. Bender, T. Augustin, and M. Blettner, Generating survival times to simulate Cox proportional hazards models, Statistics in Medicine, vol.144, issue.11, pp.1713-1723, 2005.
DOI : 10.1002/sim.2059

J. Thompson, T. Palmer, and M. S. , Bayesian analysis in Stata using winBUGS, The Stata Journal, vol.6, pp.530-549, 2006.

J. Berlin, J. Santanna, C. Schmid, L. Szczech, and H. Feldman, Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head, Statistics in Medicine, vol.273, issue.3, pp.371-387, 2002.
DOI : 10.1002/sim.1023

P. Lambert, A. Sutton, K. Abrams, and D. Jones, A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis, Journal of Clinical Epidemiology, vol.55, issue.1, pp.86-94, 2002.
DOI : 10.1016/S0895-4356(01)00414-0

R. Riley, P. Lambert, J. Staessen, J. Wang, F. Gueyffier et al., Meta-analysis of continuous outcomes combining individual patient data and aggregate data, Statistics in Medicine, vol.20, issue.11, pp.271870-1893, 2008.
DOI : 10.1002/sim.3165

URL : https://hal.archives-ouvertes.fr/hal-00428270

R. Riley and E. Steyerberg, Meta-analysis of a binary outcome using individual participant data and aggregate data. Res Synth Methods, pp.2-19, 2010.

S. Gore, S. Pocock, and G. Kerr, Regression Models and Non-Proportional Hazards in the Analysis of Breast Cancer Survival, Applied Statistics, vol.33, issue.2, pp.176-195, 1984.
DOI : 10.2307/2347444

J. Wang, J. Staessen, S. Franklin, R. Fagard, and F. Gueyffier, Systolic and Diastolic Blood Pressure Lowering as Determinants of Cardiovascular Outcome, Hypertension, vol.45, issue.5, pp.907-913, 2005.
DOI : 10.1161/01.HYP.0000165020.14745.79

URL : https://hal.archives-ouvertes.fr/hal-00427867

D. Lunn, A. Thomas, N. Best, and D. Spiegelhalter, WinBUGS -a Bayesian modelling framework: concepts, structure, and extensibility, Statistics and Computing, vol.10, issue.4, pp.325-337, 2000.
DOI : 10.1023/A:1008929526011

D. Altman and P. Andersen, Calculating the number needed to treat for trials where the outcome is time to an event, BMJ, vol.319, issue.7223, pp.1492-1495, 1999.
DOI : 10.1136/bmj.319.7223.1492

P. Lambert, A. Sutton, P. Burton, K. Abrams, and D. Jones, How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS, Statistics in Medicine, vol.4, issue.15, pp.242401-2428, 2005.
DOI : 10.1002/sim.2112

Y. Lee and J. Nelder, Hierarchical Generalized Linear Models, J R Stat Soc B Methodol, vol.58, issue.4, pp.619-678, 1996.

S. Michiels, B. Baujat, C. Mahã©, D. Sargent, and J. Pignon, Random effects survival models gave a better understanding of heterogeneity in individual patient data meta-analyses, Journal of Clinical Epidemiology, vol.58, issue.3, pp.238-245, 2005.
DOI : 10.1016/j.jclinepi.2004.08.013

V. Rondeau, S. Michiels, B. Liquet, and J. Pignon, Investigating trial and treatment heterogeneity in an individual patient data meta-analysis of survival data by means of the penalized maximum likelihood approach, Statistics in Medicine, vol.58, issue.11, pp.271894-1910, 2008.
DOI : 10.1002/sim.3161

URL : https://hal.archives-ouvertes.fr/inserm-00289664

D. Schmidt and A. Salahudeen, The Obesity-Survival Paradox in Hemodialysis Patients: Why Do Overweight Hemodialysis Patients Live Longer?, Nutrition in Clinical Practice, vol.22, issue.1, pp.11-15, 2007.
DOI : 10.1177/011542650702200111

F. Gueyffier, J. Boissel, S. Pocock, F. Boutitie, J. Coope et al., Identification of Risk Factors in Hypertensive Patients : Contribution of Randomized Controlled Trials Through an Individual Patient Database, Circulation, vol.100, issue.18, pp.88-94, 1999.
DOI : 10.1161/01.CIR.100.18.e88

S. Thompson, S. Kaptoge, I. White, A. Wood, P. Perry et al., Statistical methods for the time-to-event analysis of individual participant data from multiple epidemiological studies, International Journal of Epidemiology, vol.39, issue.5, pp.1345-1359, 2010.
DOI : 10.1093/ije/dyq063

URL : https://hal.archives-ouvertes.fr/hal-00589969

I. Ahmed, A. Sutton, and R. Riley, Assessment of publication bias, selection bias, and unavailable data in meta-analyses using individual participant data: a database survey, BMJ, vol.344, issue.jan03 1, p.7762
DOI : 10.1136/bmj.d7762