N. Vyas, D. Goswami, A. Manonmani, P. Sharma, and H. Ranganath, Nanoscale Organization of Hedgehog Is Essential for Long-Range Signaling, Cell, vol.133, issue.7, pp.1214-1227, 2008.
DOI : 10.1016/j.cell.2008.05.026

M. Harada, H. Murakami, A. Okawa, N. Okimoto, and S. Hiraoka, FGF9 monomer???dimer equilibrium regulates extracellular matrix affinity and tissue diffusion, Nature Genetics, vol.61, issue.3, pp.289-298, 2009.
DOI : 10.1002/jcc.10349

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676118

S. Yu, M. Burkhardt, M. Nowak, J. Ries, and Z. Petrasek, Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules, Nature, vol.14, issue.7263, pp.533-536, 2009.
DOI : 10.1038/nature08391

B. Benazeraf, P. Francois, R. Baker, N. Denans, and C. Little, A random cell motility gradient downstream of FGF controls elongation of an amniote embryo, Nature, vol.126, issue.7303, pp.248-252, 2010.
DOI : 10.1038/nature09151

S. Massena, G. Christoffersson, E. Hjertstrom, E. Zcharia, and I. Vlodavsky, A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils, Blood, vol.116, issue.11, pp.1924-1931, 2010.
DOI : 10.1182/blood-2010-01-266072

J. Gallagher, The extended family of proteoglycans: social residents of the pericellular zone, Current Opinion in Cell Biology, vol.1, issue.6, pp.1201-1218, 1989.
DOI : 10.1016/S0955-0674(89)80072-9

A. Ori, M. Wilkinson, and D. Fernig, The heparanome and regulation of cell function: structures, functions and challenges, Frontiers in Bioscience, vol.Volume, issue.13, pp.4309-4338, 2008.
DOI : 10.2741/3007

A. Ori, M. Wilkinson, and D. Fernig, A Systems Biology Approach for the Investigation of the Heparin/Heparan Sulfate Interactome, Journal of Biological Chemistry, vol.286, issue.22, pp.19892-19904, 2011.
DOI : 10.1074/jbc.M111.228114

K. Murphy, C. Merry, M. Lyon, J. Thompson, and I. Roberts, A New Model for the Domain Structure of Heparan Sulfate Based on the Novel Specificity of K5 Lyase, Journal of Biological Chemistry, vol.279, issue.26, pp.27239-27245, 2004.
DOI : 10.1074/jbc.M401774200

B. Lindahl, C. Westling, G. Gimenez-gallego, U. Lindahl, and M. Salmivirta, Common Binding Sites for ??-Amyloid Fibrils and Fibroblast Growth Factor-2 in Heparan Sulfate from Human Cerebral Cortex, Journal of Biological Chemistry, vol.274, issue.43, pp.30631-30635, 1999.
DOI : 10.1074/jbc.274.43.30631

H. Rahmoune, H. Chen, J. Gallagher, P. Rudland, and D. Fernig, Interaction of Heparan Sulfate from Mammary Cells with Acidic Fibroblast Growth Factor (FGF) and Basic FGF. REGULATION OF THE ACTIVITY OF BASIC FGF BY HIGH AND LOW AFFINITY BINDING SITES IN HEPARAN SULFATE, Journal of Biological Chemistry, vol.273, issue.13, pp.7303-7310, 1998.
DOI : 10.1074/jbc.273.13.7303

J. Kreuger, D. Spillmann, J. Li, and U. Lindahl, Interactions between heparan sulfate and proteins: the concept of specificity, The Journal of Cell Biology, vol.99, issue.3, pp.323-327, 2006.
DOI : 10.1172/JCI200113662

T. Rudd, K. Uniewicz, A. Ori, S. Guimond, and M. Skidmore, Comparable stabilisation, structural changes and activities can be induced in FGF by a variety of HS and non-GAG analogues: implications for sequence-activity relationships, Organic & Biomolecular Chemistry, vol.271, issue.Pt 2, pp.5390-5397, 2010.
DOI : 10.1039/c0ob00246a

X. Lin, Functions of heparan sulfate proteoglycans in cell signaling during development, Development, vol.131, issue.24, pp.6009-6021, 2004.
DOI : 10.1242/dev.01522

C. Han, D. Yan, T. Belenkaya, and X. Lin, Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc, Development, vol.132, issue.4, pp.667-679, 2005.
DOI : 10.1242/dev.01636

T. Belenkaya, C. Han, D. Yan, R. Opoka, and M. Khodoun, Drosophila Dpp Morphogen Movement Is Independent of Dynamin-Mediated Endocytosis but Regulated by the Glypican Members of Heparan Sulfate Proteoglycans, Cell, vol.119, issue.2, pp.231-244, 2004.
DOI : 10.1016/j.cell.2004.09.031

X. Lin and N. Perrimon, Developmental roles of heparan sulfate proteoglycans in Drosophila, Glycoconjugate Journal, vol.19, issue.4/5, pp.363-368, 2002.
DOI : 10.1023/A:1025329323438

J. Bishop, M. Schuksz, and J. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology, Nature, vol.81, issue.7139, pp.1030-1037, 2007.
DOI : 10.1038/nature05817

D. Yan and X. Lin, Shaping Morphogen Gradients by Proteoglycans, Cold Spring Harbor Perspectives in Biology, vol.1, issue.3, p.2493, 2009.
DOI : 10.1101/cshperspect.a002493

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773635

A. Gonzalez, M. Buscaglia, M. Ong, and A. Baird, Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues, The Journal of Cell Biology, vol.110, issue.3, pp.753-765, 1990.
DOI : 10.1083/jcb.110.3.753

B. Allen and A. Rapraeger, Spatial and temporal expression of heparan sulfate in mouse development regulates FGF and FGF receptor assembly, The Journal of Cell Biology, vol.129, issue.3, pp.637-648, 2003.
DOI : 10.1002/(SICI)1097-0177(199612)207:4<429::AID-AJA7>3.0.CO;2-J

A. Friedl, M. Filla, and A. Rapraeger, Tissue-Specific Binding by FGF and FGF Receptors to Endogenous Heparan Sulfates, Methods Mol Biol, vol.171, pp.535-546, 2001.
DOI : 10.1385/1-59259-209-0:535

C. Chuang, M. Lord, J. Melrose, M. Rees, and S. Knox, Heparan Sulfate-Dependent Signaling of Fibroblast Growth Factor 18 by Chondrocyte-Derived Perlecan, Biochemistry, vol.49, issue.26, pp.5524-5532, 2010.
DOI : 10.1021/bi1005199

S. Thompson, M. Connell, T. Van-kuppevelt, R. Xu, and J. Turnbull, Structure and epitope distribution of heparan sulfate is disrupted in experimental lung hypoplasia: a glycobiological epigenetic cause for malformation?, BMC Developmental Biology, vol.11, issue.1, p.38, 2011.
DOI : 10.1016/j.pep.2005.01.016

L. Duchesne, D. Gentili, M. Comes-franchini, and D. Fernig, Robust Ligand Shells for Biological Applications of Gold Nanoparticles, Langmuir, vol.24, issue.23, pp.13572-13580, 2008.
DOI : 10.1021/la802876u

A. Tinazli, J. Tang, R. Valiokas, S. Picuric, and S. Lata, High-Affinity Chelator Thiols for Switchable and Oriented Immobilization of Histidine-Tagged Proteins: A Generic Platform for Protein Chip Technologies, Chemistry - A European Journal, vol.102, issue.44, pp.5249-5259, 2005.
DOI : 10.1002/chem.200500154

S. Lata, A. Reichel, R. Brock, R. Tampe, and J. Piehler, High-Affinity Adaptors for Switchable Recognition of Histidine-Tagged Proteins, Journal of the American Chemical Society, vol.127, issue.29, pp.10205-10215, 2005.
DOI : 10.1021/ja050690c

L. Groc, M. Lafourcade, M. Heine, M. Renner, and V. Racine, Surface Trafficking of Neurotransmitter Receptor: Comparison between Single-Molecule/Quantum Dot Strategies, Journal of Neuroscience, vol.27, issue.46, pp.12433-12437, 2007.
DOI : 10.1523/JNEUROSCI.3349-07.2007

A. Triller and D. Choquet, New Concepts in Synaptic Biology Derived from Single-Molecule Imaging, Neuron, vol.59, issue.3, pp.359-374, 2008.
DOI : 10.1016/j.neuron.2008.06.022

J. Schlessinger, A. Plotnikov, O. Ibrahimi, A. Eliseenkova, and B. Yeh, Crystal Structure of a Ternary FGF-FGFR-Heparin Complex Reveals a Dual Role for Heparin in FGFR Binding and Dimerization, Molecular Cell, vol.6, issue.3, pp.743-750, 2000.
DOI : 10.1016/S1097-2765(00)00073-3

A. Ori, P. Free, J. Courty, M. Wilkinson, and D. Fernig, Identification of Heparin-binding Sites in Proteins by Selective Labeling, Molecular & Cellular Proteomics, vol.8, issue.10, pp.2256-2265, 2009.
DOI : 10.1074/mcp.M900031-MCP200

D. Fernig and J. Gallagher, Fibroblast growth factors and their receptors: An information network controlling tissue growth, morphogenesis and repair, Progress in Growth Factor Research, vol.5, issue.4, pp.353-377, 1994.
DOI : 10.1016/0955-2235(94)00007-8

P. Rudland, T. Davies, A. Tsao, and S. , Rat mammary preadipocytes in culture produce a trophic agent for mammary epithelia?prostaglandin E2, Journal of Cellular Physiology, vol.I, issue.3, pp.364-376, 1984.
DOI : 10.1002/jcp.1041200315

M. Delehedde, M. Lyon, J. Gallagher, P. Rudland, and D. Fernig, Fibroblast growth factor-2 binds to small heparin-derived oligosaccharides and stimulates a sustained phosphorylation of p42/44 mitogen-activated protein kinase and proliferation of rat mammary fibroblasts, Biochemical Journal, vol.366, issue.1, pp.235-244, 2002.
DOI : 10.1042/bj20011718

H. Zhu, L. Duchesne, P. Rudland, and D. Fernig, The heparan sulfate co-receptor and the concentration of fibroblast growth factor-2 independently elicit different signalling patterns from the fibroblast growth factor receptor, Cell Communication and Signaling, vol.8, issue.1, p.14, 2010.
DOI : 10.1186/1478-811X-8-14

B. Allen, M. Filla, and A. Rapraeger, Role of heparan sulfate as a tissue-specific regulator of FGF-4 and FGF receptor recognition, The Journal of Cell Biology, vol.13, issue.5, pp.845-858, 2001.
DOI : 10.1083/jcb.200106075

A. Friedl, Z. Chang, A. Tierney, and A. Rapraeger, Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues, Am J Pathol, vol.150, pp.1443-1455, 1997.

J. Hancock and I. Prior, Electron microscopic imaging of Ras signaling domains, Methods, vol.37, issue.2, pp.165-172, 2005.
DOI : 10.1016/j.ymeth.2005.05.018

D. Fernig, J. Smith, and P. Rudland, Appearance of basic fibroblast growth factor receptors upon differentiation of rat mammary epithelial to myoepithelial-like cells in culture, Journal of Cellular Physiology, vol.132, issue.1, pp.108-116, 1990.
DOI : 10.1002/jcp.1041420114

R. Morrison, J. Gross, W. Herblin, T. Reilly, and P. Lasala, Basic fibroblast growth factor-like activity and receptors are expressed in a human glioma cell line, Cancer Res, vol.50, pp.2524-2529, 1990.

F. Bono, P. Rigon, I. Lamarche, P. Savi, and V. Salel, Heparin inhibits the binding of basic fibroblast growth factor to cultured human aortic smooth-muscle cells, Biochemical Journal, vol.326, issue.3, pp.661-668, 1997.
DOI : 10.1042/bj3260661

L. Thompson, M. Pantoliano, and B. Springer, Energetic Characterization of the Basic Fibroblast Growth Factor-Heparin Interaction: Identification of the Heparin Binding Domain, Biochemistry, vol.33, issue.13, pp.3831-3840, 1994.
DOI : 10.1021/bi00179a006

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers, Science, vol.297, issue.5584, pp.1160-1163, 2002.
DOI : 10.1126/science.1073765

S. Berciaud, L. Cognet, G. Blab, and B. Lounis, Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals, Physical Review Letters, vol.93, issue.25, p.257402, 2004.
DOI : 10.1103/PhysRevLett.93.257402

URL : https://hal.archives-ouvertes.fr/hal-00002698

D. Lasne, G. Blab, S. Berciaud, M. Heine, and L. Groc, Single Nanoparticle Photothermal Tracking (SNaPT) of 5-nm Gold Beads in Live Cells, Biophysical Journal, vol.91, issue.12, pp.4598-4604, 2006.
DOI : 10.1529/biophysj.106.089771

URL : https://hal.archives-ouvertes.fr/hal-00143902

D. Lasne, G. Blab, D. Giorgi, F. Ichas, F. Lounis et al., Label-free optical imaging of mitochondria in live cells, Optics Express, vol.15, issue.21, pp.14184-14193, 2007.
DOI : 10.1364/OE.15.014184

A. Rapraeger, A. Krufka, and B. Olwin, Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation, Science, vol.252, issue.5013, pp.1705-1708, 1991.
DOI : 10.1126/science.1646484

S. Goodger, C. Robinson, K. Murphy, N. Gasiunas, and N. Harmer, Evidence That Heparin Saccharides Promote FGF2 Mitogenesis through Two Distinct Mechanisms, Journal of Biological Chemistry, vol.283, issue.19, pp.13001-13008, 2008.
DOI : 10.1074/jbc.M704531200

M. Cohn, J. Izpisua-belmonte, H. Abud, J. Heath, and C. Tickle, Fibroblast growth factors induce additional limb development from the flank of chick embryos, Cell, vol.80, issue.5, pp.739-746, 1995.
DOI : 10.1016/0092-8674(95)90352-6

A. Serls, S. Doherty, P. Parvatiyar, J. Wells, and G. Deutsch, Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung, Development, vol.132, issue.1, pp.35-47, 2005.
DOI : 10.1242/dev.01570

R. Flaumenhaft, D. Moscatelli, O. Saksela, and D. Rifkin, Role of extracellular matrix in the action of basic fibroblast growth factor: Matrix as a source of growth factor for long-term stimulation of plasminogen activator production and DNA synthesis, Journal of Cellular Physiology, vol.84, issue.1, pp.75-81, 1989.
DOI : 10.1002/jcp.1041400110

M. Presta, J. Maier, M. Rusnati, and G. Ragnotti, Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form, Journal of Cellular Physiology, vol.84, issue.1, pp.68-74, 1989.
DOI : 10.1002/jcp.1041400109

K. Tanaka, K. Suzuki, Y. Shirai, S. Shibutani, and M. Miyahara, Membrane molecules mobile even after chemical fixation, Nature Methods, vol.27, issue.11, pp.865-866, 2010.
DOI : 10.1073/pnas.0609009103

M. Saxton and K. Jacobson, Single Particle Tracking, Annu Rev Biophys Biomol Struct, vol.26, pp.373-399, 1997.
DOI : 10.1007/978-1-59745-397-4_6

V. Eswarakumar, I. Lax, and J. Schlessinger, Cellular signaling by fibroblast growth factor receptors, Cytokine & Growth Factor Reviews, vol.16, issue.2, pp.139-149, 2005.
DOI : 10.1016/j.cytogfr.2005.01.001

A. Kusumi, Y. Sako, and M. Yamamoto, Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells, Biophysical Journal, vol.65, issue.5, pp.2021-2040, 1993.
DOI : 10.1016/S0006-3495(93)81253-0

H. Makarenkova, M. Hoffman, A. Beenken, A. Eliseenkova, and R. Meech, Differential Interactions of FGFs with Heparan Sulfate Control Gradient Formation and Branching Morphogenesis, Science Signaling, vol.2, issue.88, p.55, 2009.
DOI : 10.1126/scisignal.2000304

S. Berciaud, L. Cognet, and B. Lounis, Photothermal Absorption Spectroscopy of Individual Semiconductor Nanocrystals, Nano Letters, vol.5, issue.11, pp.2160-2163, 2005.
DOI : 10.1021/nl051805d

URL : https://hal.archives-ouvertes.fr/hal-00143958

D. Fernig, P. Rudland, and J. Smith, Rat Mammary Myoepithelial-Like Cells in Culture Possess Kinetically Distinct Low-Affinity Receptors for Fibroblast Growth Factor That Modulate Growth Stimulatory Responses, Growth Factors, vol.64, issue.1, pp.27-39, 1992.
DOI : 10.1126/science.2544996

P. Munson and D. Rodbard, LIGAND: A versatile computerized approach for characterization of ligand-binding systems, Analytical Biochemistry, vol.107, issue.1, pp.220-239, 1980.
DOI : 10.1016/0003-2697(80)90515-1

A. Yayon, M. Klagsbrun, J. Esko, P. Leder, and D. Ornitz, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell, vol.64, issue.4, pp.841-848, 1991.
DOI : 10.1016/0092-8674(91)90512-W