P. Burgstaller, T. Hermann, C. Huber, E. Westhof, and M. Famulok, Isoalloxazine derivatives promote photocleavage of natural RNAs at G.U base pairs embedded within helices, Nucleic Acids Research, vol.25, issue.20, pp.4018-4027, 1997.
DOI : 10.1093/nar/25.20.4018

C. J. Burrows and S. E. Rokita, Recognition of Guanine Structure in Nucleic Acids by Nickel Complexes, Accounts of Chemical Research, vol.27, issue.10, pp.295-301, 1994.
DOI : 10.1021/ar00046a002

X. Chen, S. A. Woodson, C. J. Burrows, and S. E. Rokita, A highly sensitive probe for guanine N7 in folded structures of RNA: application to tRNAPhe and Tetrahymena group I intron, Biochemistry, vol.32, issue.30, pp.7610-7616, 1993.
DOI : 10.1021/bi00081a002

X. Chen, M. Chamorro, S. I. Lee, L. X. Shen, J. V. Hines et al., Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for ef®cient ribosomal frameshifting, EMBO J, vol.14, pp.842-852, 1995.

C. S. Chow and J. K. Barton, [12] Transition metal complexes as probes of nucleic acids, Methods Enzymol, vol.212, pp.219-242, 1992.
DOI : 10.1016/0076-6879(92)12014-H

C. S. Chow and J. K. Barton, Recognition of G-U mismatches by tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III), Biochemistry, vol.31, issue.24, pp.31-5423, 1992.
DOI : 10.1021/bi00139a001

C. Ehresmann, F. Baudin, M. Mougel, P. Romby, J. Ebel et al., Probing the structure of RNAs in solution, Nucleic Acids Research, vol.15, issue.22, pp.9109-9128, 1987.
DOI : 10.1093/nar/15.22.9109

T. E. England and O. C. Uhlenbeck, Enzymatic oligoribonucleotide synthesis with T4 RNA ligase, Biochemistry, vol.17, 1978.

B. Felden, C. Florentz, R. Giege, and E. Westhof, A central pseudoknotted three-way junction imposes tRNA-like mimicry and the orientation of three 5 H upstream pseudoknots in the 3 H terminus of tobacco mosaic virus RNA, RNA, vol.2, pp.201-212, 1996.

B. Felden, H. Himeno, J. Muto, J. F. Atkins, and R. F. Gesteland, Structural organization of Escherichia coli tmRNA, Biochimie, vol.78, issue.11-12, pp.979-983, 1996.
DOI : 10.1016/S0300-9084(97)86720-X

B. Felden, H. Himeno, A. Muto, J. Mccutcheon, J. F. Atkins et al., Probing the structure of the E. coli 10Sa RNA (tmRNA), RNA, vol.3, pp.89-104, 1997.

T. C. Gluick, R. B. Gerstner, and D. E. Draper, Effects of Mg2+, K+, and H+ on an equilibrium between alternative conformations of an RNA pseudoknot, Journal of Molecular Biology, vol.270, issue.3, pp.451-463, 1997.
DOI : 10.1006/jmbi.1997.1119

H. Heus and A. Pardi, Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops, Science, vol.253, issue.5016, 1991.
DOI : 10.1126/science.1712983

P. W. Huber, Chemical nucleases: their use in studying RNA structure and RNA-protein interactions, FASEB J, vol.7, pp.1367-1374, 1993.

J. L. Karn and D. H. Busch, Nickel(II) complexes of the tetradentate macrocycle, Nature, vol.2411213, issue.211, pp.12-317, 1966.

K. C. Keiler, P. R. Waller, and R. T. Sauer, Role of a Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA, Science, vol.271, issue.5251, pp.990-993, 1996.
DOI : 10.1126/science.271.5251.990

Y. Komine, M. Kitabatake, T. Yokogawa, K. Nishikawa, and H. Inokuchi, A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli., Proc. Natl Acad. Sci. USA, 91, pp.9223-9227, 1994.
DOI : 10.1073/pnas.91.20.9223

J. G. Muller, P. Zheng, A. C. Dadiz, S. E. Rokita, and C. J. Burrows, DNA and RNA modi®cation promoted by [Co(H 2 O) 6 ]Cl 2 and KHSO 5 : guanine selectivity, temperature dependence, and mechanism, J. Am. Chem. Soc, vol.118, 1996.

J. G. Muller, R. P. Hickerson, R. J. Perez, and C. J. Burrows, DNA damage from sul®te autoxidation catalyzed by a nickel(II) peptide, J. Am. Chem. Soc, vol.119, 1501.

P. Neta and R. E. Huie, Free-radical chemistry of sulfite, Environmental Health Perspectives, vol.64, pp.209-217, 1985.
DOI : 10.1289/ehp.8564209

T. Pan, B. Dichtl, and O. C. Uhlenbeck, Properties of an In vitro Selected Pb2+ Cleavage Motif, Biochemistry, vol.33, issue.32, pp.9561-9565, 1994.
DOI : 10.1021/bi00198a023

D. A. Peattie, Direct chemical method for sequencing RNA., Proc. Natl Acad. Sci. USA, pp.76-1760, 1979.
DOI : 10.1073/pnas.76.4.1760

D. A. Peattie and W. Gilbert, Chemical probes for higher-order structure in RNA., Proc. Natl Acad. Sci. USA, pp.77-4679, 1980.
DOI : 10.1073/pnas.77.8.4679

W. Saenger, Principles of Nucleic Acids Structure, 1984.
DOI : 10.1007/978-1-4612-5190-3

D. Schulte-frohlinde and K. Hildenbrand, Electron spin resonance studies of the reactions of Á OH and ƒy ÁÀ R radicals with DNA, polynucleotides and single base model compounds In Free Radicals in Synthesis Studies on the sequence of the 3 H -terminal region of turnip-yellow-mosaicvirus RNA, Biology Eur. J. Biochem, vol.72, pp.335-359, 1977.

I. Tinoco, Structures of base pairs involving at least two hydrogen bonds, The RNA World. Appendix 1, 1993.

G. F. Tu, G. E. Reid, J. G. Zhang, R. L. Moritz, and R. J. Simpson, C-Terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide, J. Biol. Chem, vol.270, pp.9322-9326, 1995.

C. Ushida, H. Himeno, T. Watanabe, and A. Muto, tRNA-like structures in 10Sa RNAs of Mycoplasma capricolum and Bacillus subtilis, 1994.

K. P. Williams and D. P. Bartel, Phylogenetic analysis of tmRNA secondary structure, RNA, issue.2, 1306.

K. P. Williams and D. P. Bartel, The tmRNA Website, Nucleic Acids Research, vol.26, issue.1, pp.163-165, 1998.
DOI : 10.1093/nar/26.1.163

J. R. Wyatt, J. D. Puglisi, and I. Tinoco, RNA pseudoknots. Stability and loop size requirements, 1990.