A. Visel, E. M. Rubin, and L. A. Pennacchio, Genomic views of distant-acting enhancers, Nature, vol.107, issue.7261, pp.199-205, 2009.
DOI : 10.1038/nature08451

L. A. Pennacchio, N. Ahituv, A. M. Moses, S. Prabhakar, M. A. Nobrega et al., In vivo enhancer analysis of human conserved non-coding sequences, Nature, vol.5, issue.7118, pp.499-502, 2006.
DOI : 10.1073/pnas.95.23.13483

M. J. Blow, D. J. Mcculley, Z. Li, T. Zhang, J. A. Akiyama et al., ChIP-Seq identification of weakly conserved heart enhancers, Nature Genetics, vol.14, issue.9, pp.806-810, 2010.
DOI : 10.1038/ng.650

B. Fernandez-tresguerres, S. Canon, T. Rayon, B. Pernaute, M. Crespo et al., Evolution of the mammalian embryonic pluripotency gene regulatory network, Proc. Natl Acad. Sci. USA, 2010.
DOI : 10.1073/pnas.1010708107

R. D. Hawkins, G. C. Hon, L. K. Lee, Q. Ngo, R. Lister et al., Distinct Epigenomic Landscapes of Pluripotent and Lineage-Committed Human Cells, Cell Stem Cell, vol.6, issue.5, pp.479-491, 2010.
DOI : 10.1016/j.stem.2010.03.018

T. S. Mikkelsen, Z. Xu, X. Zhang, L. Wang, J. M. Gimble et al., Comparative Epigenomic Analysis of Murine and Human Adipogenesis, Cell, vol.143, issue.1, pp.156-169, 2010.
DOI : 10.1016/j.cell.2010.09.006

A. Rada-iglesias, R. Bajpai, T. Swigut, S. A. Brugmann, R. A. Flynn et al., A unique chromatin signature uncovers early developmental enhancers in humans, Nature, vol.112, issue.7333, pp.279-283, 2011.
DOI : 10.1038/nature09692

C. Jin, C. Zang, G. Wei, K. Cui, W. Peng et al., H3.3/H2A.Z double variant???containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions, Nature Genetics, vol.41, issue.8, pp.941-945, 2009.
DOI : 10.1038/76469

URL : https://hal.archives-ouvertes.fr/hal-01292426

A. Goldberg, L. A. Banaszynski, K. M. Noh, P. W. Lewis, S. J. Elsaesser et al., Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions, Cell, vol.140, issue.5, pp.678-691, 2010.
DOI : 10.1016/j.cell.2010.01.003

K. J. Gaulton, T. Nammo, L. Pasquali, J. M. Simon, P. G. Giresi et al., A map of open chromatin in human pancreatic islets, Nature Genetics, vol.36, issue.3, pp.255-259, 2010.
DOI : 10.1038/ng.530

H. H. He, C. A. Meyer, H. Shin, S. T. Bailey, G. Wei et al., Nucleosome dynamics define transcriptional enhancers, Nature Genetics, vol.98, issue.4, pp.343-347, 2010.
DOI : 10.1038/ng.545

M. L. Conerly, S. S. Teves, D. Diolaiti, M. Ulrich, R. N. Eisenman et al., Changes in H2A.Z occupancy and DNA methylation during B-cell lymphomagenesis, Genome Research, vol.20, issue.10, pp.1383-1390, 2010.
DOI : 10.1101/gr.106542.110

A. Zemach, I. E. Mcdaniel, P. Siva, and D. Zilberman, Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation, Science, vol.328, issue.5980, pp.916-919, 2010.
DOI : 10.1126/science.1186366

J. R. Edwards, A. H. Donnell, R. A. Rollins, H. E. Peckham, C. Lee et al., Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns, Genome Research, vol.20, issue.7, pp.972-980, 2010.
DOI : 10.1101/gr.101535.109

R. Lister, M. Pelizzola, R. H. Dowen, D. Hawkins, G. Hon et al., Human DNA methylomes at base resolution show widespread epigenomic differences, Nature, vol.10, issue.7271, pp.315-322, 2009.
DOI : 10.1038/nature08514

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857523

C. Schmidl, M. Klug, T. J. Boeld, R. Andreesen, P. Hoffman et al., Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity, Genome Research, vol.19, issue.7, pp.1165-1174, 2009.
DOI : 10.1101/gr.091470.109

A. A. Se´randourse´randour, S. Avner, F. Percevault, F. Demay, M. Bizot et al., Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers, Genome Research, vol.21, issue.4, pp.555-565, 2011.
DOI : 10.1101/gr.111534.110

M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala et al., Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1, Science, vol.324, issue.5929, pp.930-935, 2009.
DOI : 10.1126/science.1170116

S. Ito, A. C. D-'alessio, O. V. Taranova, K. Hong, L. C. Sowers et al., Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification, Nature, vol.22, issue.7310, pp.1129-1133, 2010.
DOI : 10.1038/nature09303

Y. F. He, B. Z. Li, Z. Li, P. Liu, Y. Wang et al., Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA, Science, vol.333, issue.6047, pp.1303-1307, 2011.
DOI : 10.1126/science.1210944

S. Ito, L. Shen, Q. Dai, S. C. Wu, L. B. Collins et al., Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine, Science, vol.333, issue.6047, pp.1300-1303, 2011.
DOI : 10.1126/science.1210597

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495246

A. Maiti and A. C. Drohat, Thymine DNA Glycosylase Can Rapidly Excise 5-Formylcytosine and 5-Carboxylcytosine: POTENTIAL IMPLICATIONS FOR ACTIVE DEMETHYLATION OF CpG SITES, Journal of Biological Chemistry, vol.286, issue.41, pp.35334-35338, 2011.
DOI : 10.1074/jbc.C111.284620

W. A. Pastor, U. J. Pape, Y. Huang, H. R. Henderson, R. Lister et al., Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells, Nature, vol.2, issue.7347, pp.394-397, 2011.
DOI : 10.1038/nature10102

C. X. Song, K. E. Szulwach, Y. Fu, Q. Dai, C. Yi et al., Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine, Nature Biotechnology, vol.193, issue.1, pp.68-72, 2011.
DOI : 10.1021/ja00398a019

K. Williams, J. Christensen, M. T. Pedersen, J. V. Johansen, P. A. Cloos et al., TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity, Nature, vol.38, issue.7347, pp.343-348, 2011.
DOI : 10.1038/nature10066

H. Wu, A. C. D-'alessio, S. Ito, Z. Wang, K. Cui et al., Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells, Genes & Development, vol.25, issue.7, pp.679-684, 2011.
DOI : 10.1101/gad.2036011

Y. Xu, F. Wu, L. Tan, L. Kong, L. Xiong et al., Genome-wide Regulation of 5hmC, 5mC, and Gene Expression by Tet1 Hydroxylase in Mouse Embryonic Stem Cells, Molecular Cell, vol.42, issue.4, pp.451-464, 2011.
DOI : 10.1016/j.molcel.2011.04.005

O. Yildirim, R. Li, J. H. Hung, P. B. Chen, X. Dong et al., Mbd3/NURD Complex Regulates Expression of 5-Hydroxymethylcytosine Marked Genes in Embryonic Stem Cells, Cell, vol.147, issue.7, pp.1498-1510, 2011.
DOI : 10.1016/j.cell.2011.11.054

G. Ficz, M. R. Branco, S. Seisenberger, F. Santos, F. Krueger et al., Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation, Nature, vol.10, issue.7347, pp.398-402, 2011.
DOI : 10.1038/nature10008

H. Stroud, S. Feng, S. Morey-kinney, S. Pradhan, and S. E. Jacobsen, 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells, Genome Biology, vol.12, issue.6, p.54, 2011.
DOI : 10.1016/j.stem.2010.03.018

URL : http://doi.org/10.1186/gb-2011-12-6-r54

K. E. Szulwach, X. Li, Y. Li, C. Song, J. W. Han et al., Integrating 5-Hydroxymethylcytosine into the Epigenomic Landscape of Human Embryonic Stem Cells, PLoS Genetics, vol.4, issue.6, p.1002154, 2011.
DOI : 10.1371/journal.pgen.1002154.s005

M. C. Haffner, A. Chaux, A. K. Meeker, D. M. Esopi, J. Gerber et al., Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers, Oncotarget, vol.2, issue.8, pp.627-637, 2011.
DOI : 10.18632/oncotarget.316

K. E. Szulwach, X. Li, Y. Li, C. Song, H. Wu et al., 5-hmC???mediated epigenetic dynamics during postnatal neurodevelopment and aging, Nature Neuroscience, vol.122, issue.12, pp.1607-1616, 2011.
DOI : 10.1038/nprot.2008.211

M. Klug and M. Rehli, Functional Analysis of Promoter CPG-Methylation using a CpG-Free Luciferase Reporter Vector, Epigenetics, vol.1, issue.3, pp.127-130, 2006.
DOI : 10.4161/epi.1.3.3327

B. Lefebvre, Y. Benomar, A. Gue´dingue´din, A. Langlois, N. Hennuyer et al., Proteasomal degradation of retinoid X receptor ?? reprograms transcriptional activity of PPAR?? in obese mice and humans, Journal of Clinical Investigation, vol.120, issue.5, pp.1454-1468, 2010.
DOI : 10.1172/JCI38606DS1

J. Eeckhoute, M. Lupien, C. A. Meyer, M. P. Verzi, R. A. Shivdasani et al., Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers, Genome Research, vol.19, issue.3, pp.372-380, 2009.
DOI : 10.1101/gr.084582.108

URL : https://hal.archives-ouvertes.fr/hal-00369667

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, issue.3, p.25, 2009.
DOI : 10.1186/gb-2009-10-3-r25

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2079, 2009.
DOI : 10.1093/bioinformatics/btp352

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, W. E. Johnson et al., Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, issue.9, p.137, 2008.
DOI : 10.1186/gb-2008-9-9-r137

M. P. Creyghton, A. W. Cheng, G. G. Welstead, T. Kooistra, B. W. Carey et al., Histone H3K27ac separates active from poised enhancers and predicts developmental state, Proc. Natl Acad. Sci. USA, pp.21931-21936, 2010.
DOI : 10.1073/pnas.1016071107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003124

E. M. Jones-villeneuve, M. W. Mcburney, K. A. Rogers, and V. I. Kalnins, Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells, The Journal of Cell Biology, vol.94, issue.2, pp.253-262, 1982.
DOI : 10.1083/jcb.94.2.253

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2112882

C. B. Moens and L. Selleri, Hox cofactors in vertebrate development, Developmental Biology, vol.291, issue.2, pp.193-206, 2006.
DOI : 10.1016/j.ydbio.2005.10.032

H. Wu and Y. Zhang, Tet1 and 5-hydroxymethylation, Cell Cycle, vol.10, issue.15, pp.2428-2436, 2011.
DOI : 10.1038/ng0709-766

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3180185

T. Liu, J. A. Ortiz, L. Taing, C. A. Meyer, B. Lee et al., Cistrome: an integrative platform for transcriptional regulation studies, Genome Biology, vol.12, issue.8, p.83, 2011.
DOI : 10.1101/gr.115519.110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245621

H. Shin, T. Liu, A. K. Manrai, and S. Liu, CEAS: cis-regulatory element annotation system, Bioinformatics, vol.25, issue.19, pp.2605-2606, 2009.
DOI : 10.1093/bioinformatics/btp479

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/25/19/2605

C. Y. Mclean, D. Bristor, M. Hiller, S. L. Clarke, B. T. Schaar et al., GREAT improves functional interpretation of cis-regulatory regions, Nature Biotechnology, vol.113, issue.5, pp.1093-1100, 2010.
DOI : 10.1038/nbt.1630

P. G. Giresi and J. D. Lieb, Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements), Methods, vol.48, issue.3, pp.233-239, 2009.
DOI : 10.1016/j.ymeth.2009.03.003

C. Ong and V. G. Corces, Enhancer function: new insights into the regulation of tissue-specific gene expression, Nature Reviews Genetics, vol.424, issue.4, pp.283-293, 2011.
DOI : 10.1038/nrg2957

R. Nielsen, T. A. Pedersen, D. Hagenbeek, P. Moulos, R. Siersbaek et al., Genome-wide profiling of PPAR??:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis, Genes & Development, vol.22, issue.21, pp.2953-2967, 2008.
DOI : 10.1101/gad.501108

R. Siersbaek, R. Nielsen, S. John, M. H. Sung, S. Baek et al., Extensive chromatin remodelling and establishment of transcription factor ???hotspots??? during early adipogenesis, The EMBO Journal, vol.9, issue.8, pp.1459-1472, 2011.
DOI : 10.1038/emboj.2011.65

M. I. Lefterova, D. J. Steger, D. Zhuo, M. Qatanani, S. E. Mullican et al., Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor ?? Function in Adipocytes and Macrophages, Molecular and Cellular Biology, vol.30, issue.9, pp.2078-2089, 2010.
DOI : 10.1128/MCB.01651-09

S. F. Schmidt, M. Jørgensen, Y. Chen, R. Nielsen, A. Sandelin et al., Cross species comparison of C/EBP?? and PPAR?? profiles in mouse and human adipocytes reveals interdependent retention of binding sites, BMC Genomics, vol.52, issue.1, p.152, 2011.
DOI : 10.1371/journal.pone.0001623

Z. Zhang, C. W. Chang, W. L. Goh, W. Sung, and E. Cheung, CENTDIST: discovery of co-associated factors by motif distribution, Nucleic Acids Research, vol.39, issue.suppl, pp.391-399, 2011.
DOI : 10.1093/nar/gkr387

P. Qin, J. M. Haberbusch, Z. Zhang, K. J. Soprano, and D. R. Soprano, Pre-B Cell Leukemia Transcription Factor (PBX) Proteins Are Important Mediators for Retinoic Acid-dependent Endodermal and Neuronal Differentiation of Mouse Embryonal Carcinoma P19 Cells, Journal of Biological Chemistry, vol.279, issue.16, pp.16263-16271, 2004.
DOI : 10.1074/jbc.M313938200

A. G. Cristancho and M. A. Lazar, Forming functional fat: a growing understanding of adipocyte differentiation, Nature Reviews Molecular Cell Biology, vol.466, issue.11, pp.722-734, 2011.
DOI : 10.1038/nrm3198

Y. Jacobs, C. A. Schnabel, and M. L. Cleary, Hindbrain Enhancer Activity, Molecular and Cellular Biology, vol.19, issue.7, pp.5134-5142, 1999.
DOI : 10.1128/MCB.19.7.5134

F. Matarese, S. Carrillo-de, E. Pau, and H. G. Stunnenberg, 5-Hydroxymethylcytosine: a new kid on the epigenetic block?, Molecular Systems Biology, vol.62, issue.1, p.562, 2011.
DOI : 10.1093/nar/gkm049

H. Wu, A. C. D-'alessio, S. Ito, K. Xia, Z. Wang et al., Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells, Nature, vol.18, issue.7347, pp.389-393, 2011.
DOI : 10.1038/nature09934

V. Valinluk, H. H. Tsai, D. K. Rogstad, A. Burdzy, A. Bird et al., Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2), Nucleic Acids Research, vol.32, issue.14, pp.4100-4108, 2004.
DOI : 10.1093/nar/gkh739

S. G. Jin, S. Kadam, and G. P. Pfeifer, Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine, Nucleic Acids Research, vol.38, issue.11, p.125, 2010.
DOI : 10.1093/nar/gkq223

V. Valinluk and L. C. Sowers, Endogenous Cytosine Damage Products Alter the Site Selectivity of Human DNA Maintenance Methyltransferase DNMT1, Cancer Research, vol.67, issue.3, pp.946-950, 2007.
DOI : 10.1158/0008-5472.CAN-06-3123

P. L. Jones, G. J. Veenstra, P. A. Wade, D. Vermaak, S. U. Kass et al., Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription, Nature Genetics, vol.19, issue.2, pp.187-191, 1998.
DOI : 10.1038/561

X. Nan, H. H. Ng, C. A. Johnson, C. D. Laherty, B. M. Turner et al., Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex, Nature, vol.393, pp.386-389, 1998.

F. Fuks, P. J. Hurd, D. Wolf, X. Nan, A. P. Bird et al., The Methyl-CpG-binding Protein MeCP2 Links DNA Methylation to Histone Methylation, Journal of Biological Chemistry, vol.278, issue.6, pp.4035-4040, 2003.
DOI : 10.1074/jbc.M210256200

M. Wiench, S. John, S. Baek, T. A. Johnson, M. Sung et al., DNA methylation status predicts cell type-specific enhancer activity, The EMBO Journal, vol.454, issue.15, pp.3028-3039, 2011.
DOI : 10.1371/journal.pgen.1000438

M. B. Stadler, R. Murr, L. Burger, R. Ivanek, F. Lienert et al., DNA-binding factors shape the mouse methylome at distal regulatory regions, Nature, vol.480, pp.490-495, 2011.

E. Barnea and Y. Bergman, Synergy of SF1 and RAR in Activation of Oct-3/4 Promoter, Journal of Biological Chemistry, vol.275, issue.9, pp.6608-6619, 2000.
DOI : 10.1074/jbc.275.9.6608

P. Gu, B. Goodwin, A. C. Chung, X. Xu, D. A. Wheeler et al., Orphan Nuclear Receptor LRH-1 Is Required To Maintain Oct4 Expression at the Epiblast Stage of Embryonic Development, Molecular and Cellular Biology, vol.25, issue.9, pp.3492-3505, 2005.
DOI : 10.1128/MCB.25.9.3492-3505.2005

X. Zhang, J. Zhang, T. Wang, M. A. Esteban, and D. Pei, Esrrb Activates Oct4 Transcription and Sustains Self-renewal and Pluripotency in Embryonic Stem Cells, Journal of Biological Chemistry, vol.283, issue.51, pp.35825-35833, 2008.
DOI : 10.1074/jbc.M803481200