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Abstract. Di�usion imaging, through the study of water di�usion, al-
lows for the characterization of brain white matter, both at the po pula-
tion and individual level. In recent years, it has been employed to detect
brain abnormalities in patients su�ering from a disease, e.g. from m ul-
tiple sclerosis (MS). State-of-the-art methods usually utili ze a database
of matched (age, sex, ...) controls, registered onto a template, to test for
di�erences in the patient white matter. Such approaches howeve r suf-
fer from two main drawbacks. First, registration algorithms are prone
to local errors, thereby degrading the comparison results. Second, the
database needs to be large enough to obtain reliable results. However, in
medical imaging, such large databases are hardly available. In this paper,
we propose a new method that addresses these two issues. It relieson the
search for samples in a local neighborhood of each pixel to increase the
size of the database. Then, we propose a new test based on thesesamples
to perform a voxelwise comparison of a patient image with respect t o a
population of controls. We demonstrate on simulated and real MS pa-
tient data how such a framework allows for an improved detection po wer
and a better robustness and reproducibility, even with a small d atabase.

1 Introduction

Di�usion weighted imaging is an MRI modality that provides information about
water di�usion within tissues. It has therefore gained much interest for the study
of brain white matter architecture. In particular, it may be utiliz ed for the de-
tection of structural di�erences related to a disease. Reported studies on diseases
usually fall within two categories: (i) group comparisons between a population
of healthy subjects and a group of patients su�ering from the disease and(ii)
comparison of one patient to a set of healthy controls. The former aims at char-
acterizing the overall course of a disease while the latter focuseson detecting its
early signs and, possibly, its future evolution.

Both approaches are of great interest to understand a disease. In this work,
we are interested in di�usion imaging for multiple sclerosis (MS). MS is a de-
myelinating disease, causing both lesions visible on conventional MRI and di�use
damage to the brain white matter architecture that may be visible in di�usion
imaging [1]. Having a robust detection of that di�use damage for a speci�c pa-
tient is crucial as it could help to predict how the disease will evolve in time,
and potentially allow to adapt the treatment.
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Recent works on the comparison of di�usion images have �rst focused on
scalar values extracted from the di�usion tensor, such as mean di�usivity (MD)
or fractional anisotropy (FA). For example, Filippi et al. [2] presented a study
on manually de�ned regions of interest demonstrating an MD increase and an
FA decrease in speci�c regions for MS patients brains. However, utilizing only a
scalar value may discard a large part of the tensor information and decrease the
precision of the comparison. To overcome this problem, several groups have pro-
posed methods to utilize the full tensor either for population comparison (Lepore
et al. utilized the Hotelling's T2 test on tensors for HIV patients [3], Whitcher
et al. [4] the Cramers test on tensors), or for patient to group comparison (Com-
mowick et al. [5]). These works have demonstrated that a test based on the full
tensor information yields more precise comparisons. Finally, when high quality
data is available (HARDI acquisitions), one may now consider higher order mod-
els such as orientation distribution functions (ODFs) to get improved sensitivity
in crossing �bers regions where the di�usion tensor performs poorly[6].

Independently of their strengths and weaknesses, comparison methods usu-
ally rely on a parametric or permutation statistical test. Such approaches often
require large databases either to ensure that the distribution of thetest statistic
matches the hypothesized one or to make the permutation test data indepen-
dent. However, in medical imaging studies, databases are usually smalldue to
the di�culty to recruit patients and volunteers, and they may be e ven smaller
when parameters such as age or sex must match between the control database
and the patients. In those cases, the chosen statistical test may become erroneous
and generate either false positive or false negative detections.

In addition, all automatic approaches need a common reference frame that is
often constructed from the healthy subjects by means of non linear registration
(so called atlas construction [7]). However, such registration methods are not
perfect and may be prone to errors due to noise and artifacts. Such errors may
further corrupt the comparison performance.

To tackle these issues, we propose a new methodology for the robust detec-
tion of white matter di�erences at a patient level. It is based on ideas recently
introduced for non-local means denoising [8] and segmentation [9], adapted for
a patient-to-group comparison of di�usion models that can be represented as
vectors in a vector space (e.g di�usion tensors or ODFs). We presentin Section
2 the overall comparison method. We then apply this new method to simulated
data and real data of multiple sclerosis patients demonstrating higheraccuracy
and reproducibility for di�erences detection over state-of-the-art methods.

2 Non-Local Means for the Comparison of Di�usion Data

In the following, we assume that a database ofM imagesI m has been constituted,
i.e. all these images have been non linearly registered to a common reference
system, and that we are interested in comparing voxel by voxel an imageT to
the reference database. We propose an algorithm relying on the non-local means
framework [10] optimized by Coup�e et al. for medical image denoising [8] and
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segmentation [9]. For each pointx of T, we de�ne a patch B (x) (half size h)
around it and follow these main steps:

{ For each imageI m , search for patchesBm (x j ) similar to the patch B (x) of
T in a neighborhoodN (x) around x

{ Associate a weightwmj to each patch Bm (x j ), depending of the similarity
betweenB (x) and Bm (x j ) (Section 2.1)

{ Keep the center voxelDmj of each patch and associate it to its weightwmj
{ Utilize the set of weighted samples to perform the comparison betweenT

and I m ; m 2 f 0; :::; M g (Section 2.2)

This framework has several advantages: it may help to account for potential
registration errors onto the common template for comparison, and it may sig-
ni�cantly increase the number of samples to perform the voxelwisecomparison
even though the database consists of a limited number of images.

2.1 Similarity Weights between Patches

The selection of patches is a crucial point as it will de�ne the relative importance
of each patch in the �nal di�erences detection step. We consider thatthe model
chosen to describe the di�usion of water molecules may be represented as a
vector, e.g. tensors in the Log-Euclidean framework [11] or ODFs on a spherical
harmonics basis [6]. Before comparing patches, a preselection is performed for
speed reasons and to avoid the degeneracy of the patches weightswmj :
1. Compute the Log-Euclidean distance between the covariance matrices� B (x )

and � B m (x j ) : if it exceeds the average distance between any two covariance
matrices � B m (x ) of the database, discardBm (x j ), otherwise proceed to the
next step;

2. Compute Hotelling's T2 statistic [12] to test for mean di�erences between
B (x) and Bm (x j ) using the pooled covariance matrix: if it exceeds the aver-
age statistic computed from any two patchesBm (x), discard patch Bm (x j ).
For the remaining patches, we then compute their weights. The weight wmj

between two patchesB (x) and Bm (x j ) is de�ned as a function of the sum of
squared di�erences between the two patches:

wmj = e� 1
2 � j B ( x ) j

P
i 2 B ( x ) � T

i
^� � 1 (x ) � i (1)

where � i = I m (i + x j � x) � T(i ) are the di�erences between corresponding
voxels of the patches,jB (x)j is the number of voxels inB (x), � a user-de�ned
scale parameter and ^� (x) is the local noise covariance aroundx on T. These
weights characterize the similarity between patches and vary between 0 and 1: 1
is reached when the two patches are equal, 0 corresponds to a total disagreement.

Since structures with di�erent orientations may occur, the noise covariance
^� is estimated locally. Computing it globally over the whole image could indeed
lead to an over-estimation and therefore to biased weights. Coup�e et al. [8]
proposed a method to estimate such a local noise variance on scalar valued
images. Here, we extend it to vector-valued images.̂� (x) is estimated from
voxels in patch B (x):
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{ For each voxelx i in B (x), consider a small neighborhood of N voxels around
it (e.g. the 26 neighbors ofx i ). Pseudo-residuals� x i are computed as:

� x i =

r
N

N + 1

0

@T(x i ) �
1
N

X

x j 2 N (x i )

T(x j )

1

A

{ The local image noise covariance is de�ned from these pseudo-residuals:

^� (x) =
1

jB (x)j

X

x i 2 B (x )

� x i �
T
x i

2.2 Comparison of Weighted Data Samples

We have constituted a list of weighted samplesS = f S1; : : : ; SM g at each voxelx
of T, whereSm = f (Dm 0; wm 0); : : : ; (DmJ ; wmJ )g. We now utilize these samples
to confront the patient image to the healthy subjects database. We compute the
weighted mean� x and weighted covariance matrix � x at each point x as:

� x =
1

P
i;j wij

X

i;j

wij D ij (2)

� x =

P
i;j wij

� P
i;j wij

� 2
�

P
i;j w2

ij

X

i;j

wij (D ij � � )(D ij � � )T

These estimates are very interesting as they take into account the similarity
of each patch in the estimation of the mean and covariance. We then test for
voxelwise di�erences by computing the Mahalanobis distance at each point:

Z 2(D x ; � x ; � x ) = ( D x � � x )T � � 1
x (D x � � x ) (3)

where D x is the vector value of the patient image at point x (e.g. log-tensor or
ODF value). Considering there are enough samples, this squared distance follows
a � 2 distribution with d degrees of freedom, whered is the vector dimension,
and a p-value is computed fromZ 2 as:

px = 1 � F� 2
d

�
Z 2(D x ; � x ; � x )

�
(4)

where F� 2
d

is the cumulative distribution function of a � 2 distribution with d
degrees of freedom.

3 Results

Our method has two main parameters: the patch size and the search neighbor-
hood. The smaller the sizes, the closer the method gets to [5]. On the contrary,
large sizes tend to increase the number of false negatives. We �xed the parame-
ters on the basis of qualitative results on several patients: patch size of 3� 3 � 3
(h = 1) and a neighborhood for patch search of 4 voxels in every direction. In
addition, we have set� - Eq. (1) - to 1 as is suggested by Coup�e et al. [8].
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3.1 Experiments on Simulated Data

We �rst present a quantitative study on simulated images. Starting from a refer-
ence di�usion tensor image (Fig. 1.a), 90 images were simulated by adding Rician
noise to the DWI. Then, a patient image was simulated by inserting lesions, i.e.
tensors swollen in the two non principal directions. To illustrate the detection
power of our method and its robustness to database size, we randomly selected
from the 90 images subgroups of 15 to 90 images and used them as the reference
database to compare to the simulated patient. Fig. 1 shows the average Dice
score results of our method (M 2) and the one proposed in [5] (M 1).

(a) (b)

(c) (d) (e)

Fig. 1. Quantitative Detection Power on Simulated Data . Left: Illustration of
one noisy reference database image (a) and the simulated lesionsimage (b), as well
as results of detection utilizing 15 images from the database with M 1 (c) and M 2 (d).
The right side (e) presents the dice scores obtained by each method as a function of
the number of samples in the database. Legend: blue -M 1 , red - M 2 .

This �gure illustrates well the issues arising when using a smalldatabase for
di�erences detection. As the sample size decreases,M 1 performs worse, mainly
due to a large number of false positives being detected (see Fig. 1.c). These
errors mainly stem from the small size of the database that weakens the power
of the test. Instead, M 2 obtains much better and more steady scores, which
demonstrate its robustness.M 2 performs better as we are able from a small
database to increase the number of samples used for the comparison.

3.2 Experiments on Multiple Sclerosis Data

We have utilized the LONI ICBM database of healthy control di�usion images 1.
This database is composed of 160 control images: T1-weighted images (isotropic

1 https://ida.loni.ucla.edu/login.jsp?project=ICBM
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1mm3) and di�usion images acquired on a 3T MRI scanner (b-value of 1000
s=mm2, 30 directions with a resolution of 2x2x2 mm3). This control subject
database was compared to a database of 10 MS patient images acquired following
a similar protocol with the same parameters. As a �rst step before processing,
the di�usion tensor images are �rst registered to the T1-w images usinga global
a�ne transform [13] and a non linear free-form deformation [14] with few control
points to recover EPI distortions. Then, a DTI atlas is computed from the control
subjects DTI using Guimond's et al. atlas construction method [7], combined to
a non linear tensor-based registration algorithm.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Qualitative Comparison on Real MS Patient Images . Comparison of
the score maps (Eq. (3)) and di�erences detected by the two meth ods M 1 (b,c) and
M 2 (d-f). (a): T1 image of a patient, (b,e): score maps for M 1 and M 2 , (d): number
of patches kept for each voxel by M 2 (from blue: low number, to red: large number),
(c,f): di�erences detected at the 95% level.

Each DTI patient image is then registered onto the atlas and compared voxel
by voxel to the database of controls either with the method proposed in[5] M 1

or the proposed methodM 2. We present in Fig. 2 a representative qualitative
comparison of the results obtained by the two methods utilizing onlya subgroup
of 40 images from the controls subjects database.

We can notice on this �gure that M 1 is a�ected by the small size of the
database and the registration errors, resulting in a large number of falsepositive
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detections in Fig. 2.b. On the contrary, adding additional patches as it is done
in M 2 leads to many more patches being considered (see Fig. 2.d) and possibly
more accurate ones if the registration errors were in the bounds of the local
neighborhood. As a consequence, the detection results in Fig. 2.c reveal much
less false positives while keeping the detection power on the MS lesions.

Finally, we present a quantitative evaluation of the reproducibili ty of the
obtained score maps when the control subjects database changes. To do so, we
have, for each patient, repeatedly selectedNDb images out of the 160 images of
the database. We have then computed for each of these sub-databases a score
map deriving either from M 1 or M 2. To evaluate the variability of the scores,
we have chosen to utilize the average of the voxelwise standard deviation of
these maps. We present in Table 1 the average over all images of these standard
deviation values for NDb = 20, 40 and 80 images.

Table 1. Reproducibility of Comparison Results with Changi ng Databases .
Average variation of z-scores over all voxels of all images for the compared methods.

NDb = 20 NDb = 40 NDb = 80
Method M 1 0.737 0.373 0.164
Method M 2 0.627 0.336 0.155

This table shows that the obtained standard deviations are signi�cantly lower
for M 2 (paired t-tests, p-value of 0:001). This indicates a better reproducibility
of the results when considering our non-local approach. This con�rms the robust-
ness of the proposed method and the interest of utilizing neighboring patches,
especially when performing a comparison against a very small database.

4 Conclusion

We have presented a new method for the robust detection of di�erences be-
tween a patient di�usion image and a population of control subject di�usi on
images. It relies on the search for additional patches in a local neighborhood of
each voxel utilizing the non-local means framework adapted to di�usion tensor
images in the Log-Euclidean space. We have demonstrated both on simulated
and real datasets that this allows to detect more accurately di�erences even if
the reference database is small, and to be more robust to potential registration
errors. Moreover, it may be applied to any type of di�usion data that can be
represented as vector values such as ODFs in a spherical harmonics basis, which
should further increase detection performance in regions with crossing �bers.

Future works will include an in-depth study of weights de�nition f or oriented
structures. The weights may be erroneous in patches where di�erent orienta-
tions are present, which could lead to decreased performance. Accounting for
these changes in orientations will therefore further improve comparison quality.
We will also investigate other approaches to use the selected patchesto detect
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di�erences. For example, our method could be coupled with a robust compari-
son algorithm such as the one proposed by Commowick et al. for tensors [15].
Accounting for spatial correlation between the selected patches couldalso bring
further improvements to the comparison. Finally, we will also investigate how to
extend our approach to robust population comparison.
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