Polyamine derivatives as selective RNaseA mimics. - Archive ouverte HAL Access content directly
Journal Articles Nucleic Acids Research Year : 2004

Polyamine derivatives as selective RNaseA mimics.

(1) , (2) , (3) , (2) , (3) , (1) , (2)
1
2
3

Abstract

Site-selective scission of ribonucleic acids (RNAs) has attracted considerable interest, since RNA is an intermediate in gene expression and the genetic material of many pathogenic viruses. Polyamine-imidazole conjugates for site-selective RNA scission, without free imidazole, were synthesized and tested on yeast phenylalanine transfer RNA. These molecules catalyze RNA hydrolysis non-randomly. Within the polyamine chain, the location of the imidazole residue, the numbers of nitrogen atoms and their relative distances have notable influence on cleavage selectivity. A norspermine derivative reduces the cleavage sites to a unique location, in the anticodon loop of the tRNA, in the absence of complementary sequence. Experimental results are consistent with a cooperative participation of an ammonium group of the polyamine moiety, in addition to it's binding to the negatively charged ribose-phosphate backbone, as proton source, and the imidazole moiety as a base. There is correlation between the location of the magnesium binding sites and the RNA cleavage sites, suggesting that the protonated nitrogens of the polycationic chain compete with some of the magnesium ions for RNA binding. Therefore, the cleavage pattern is specific of the RNA structure. These compounds cleave at physiological pH, representing novel reactive groups for antisense oligonucleotide derivatives or to enhance ribozyme activity.
Fichier principal
Vignette du fichier
NAR_2004.pdf (210.9 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

inserm-00715063 , version 1 (06-07-2012)

Identifiers

Cite

Sandra Fouace, Cyril Gaudin, Sylvie Picard, Sophie Corvaisier, Jacques Renault, et al.. Polyamine derivatives as selective RNaseA mimics.. Nucleic Acids Research, 2004, 32 (1), pp.151-7. ⟨10.1093/nar/gkh157⟩. ⟨inserm-00715063⟩
461 View
292 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More