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ABSTRACT 

The metabolism of flavone-8-acetic acid (FAA) has been hypothesized to be partly 

responsible for its potent anticancer activity in mice. The purpose of this study was to identify 

the mouse enzymes involved in FAA Phase I metabolism and evaluate their possible 

induction in vivo by FAA. Mouse microsomes metabolized FAA into 6 metabolites: 3',4'-

dihydrodiol-FAA, 5,6-epoxy-FAA, 4'-OH-FAA, 3’-OH-FAA, 3’,4’-epoxy-FAA and 6-OH-

FAA. Using Cyp-specific inhibitors (furafylline, Cyp1a2; α-naphthoflavone, Cyp1b1; 

tranylcypromine, Cyp2b9; quercetin, Cyp2c29; quinidine, 2d9; diethyldithiocarbamate, 

Cyp2e1; ketoconazole, Cyp3a11), the formation of  5,6-epoxy-FAA was mainly attributed to 

Cyps 1a2, 1b1, 2b9, 2c29 and 2e1, whereas the 3’,4’-epoxy-FAA was formed by Cyps 2b9 

and 3a11. The 4’-OH-FAA was generated by Cyps 1a2, 1b1, 2b9 and 2e1, and the 6-OH-FAA 

was formed by Cyps 1b1 and 2c9. Using the epoxide scavenger N-acetyl cysteine, 4’-OH-

FAA, 3’-OH-FAA and 6-OH-FAA were shown to derive partly from non enzymatic 

isomerisation of their corresponding epoxides. The specific epoxide hydrolase inhibitor 

elaidamide allowed the confirmation that 3’,4’-dihydrodiol-FAA was formed via the epoxide 

hydrolase. FAA treatment in vivo in mice led to a significant increase in the hepatic 

expression of Cyp1a2 (1.9-fold), 2e1 (2.1-fold), 2b10 (3.2-fold), 2d9 (2.3-fold) and 3a11 (2.2-

fold), as evaluated by qRT-PCR. In conclusion, several Cyps were shown to be involved in 

FAA metabolism, particularly Cyps 3a11 and 2b9 which were responsible for the formation 

of the principal metabolites (5,6-epoxy-FAA, 3',4'-epoxy-FAA), and that FAA could induce 

the expression of several Cyps after in vivo administration. The possible implication of these 

enzymes in the in vivo anticancer activity of FAA in mice is discussed. 
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I!TRODUCTIO! 

The flavonoids are natural compounds possessing a large range of biochemical and 

pharmacological properties [1] including antitumoral activities [2]. Among the flavonoids 

identified as potential anticancer agents, flavone-8-acetic acid (FAA; 2-phenyl-8-

(carboxymethyl)benzopyran-4-one; NSC-347512; LM975; Figure 1-A) emerged as an 

interesting lead because of its potent anticancer activity in mouse solid tumors [3-6] and also 

in human tumors transplanted in nude mice [7;8]. However, despite its impressive antitumor 

activity reported in murine models, FAA has not shown anticancer activity in humans [9;10]. 

This marked interspecies difference in FAA anticancer activity has been hypothesized to be 

due to a possible metabolic activation of this flavonoid in vivo in mice [11;12]. 

 The mechanism of anticancer activity of FAA in mice is not fully elucidated. FAA is 

weakly cytotoxic in vitro but is active in vivo when the same cell lines are transplanted in 

mice [12-14]. In view of this discrepancy between in vivo and in vitro effectiveness, several 

indirect mechanisms of anticancer action have therefore been suggested: augmentation of 

natural killer activity and induction of interferon [15]; antiangiogenic properties [16]; tumor 

blood flow shut down and induction of extensive hemorrhagic necrosis [3;17-20]. At the 

molecular level, FAA has been reported to induce DNA damage in Glasgow osteogenic 

sarcoma after in vivo administration, which could hint to an in vivo formation of reactive 

metabolites in mice [21]. 

 In view of the poor cytotoxic activity of FAA in vitro and its potent anticancer activity 

in vivo in mice, the requirement for FAA metabolic activation has therefore been 

hypothesized [11;12]. In a search for potentially active FAA metabolites, we have previously 

identified six FAA phase I metabolites formed in vitro using mouse microsomes [22]. The 

identified metabolites include three monohydroxylated derivatives (3'-OH-FAA, 4'-OH-FAA 

and 6-OH-FAA), two epoxides (3',4'-epoxy-FAA and 5,6-epoxy-FAA), and one dihydrodiol 
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(3',4'-dihydodiol-FAA) (Figure 1-A) [22]. We have also shown that human microsomes were 

unable to metabolize this compound to a significant extent, as compared with mouse 

microsomes [22]. Although the mouse genome contains 72 putatively functional CYP genes 

compared to only 27 in humans [23], the cytochrome P450s (CYP) sub-families mostly 

involved in drug metabolism, i.e., the CYP1A, CYP2B, CYP2E, CYP3A and CYP4A appear 

to be roughly similar between mouse and man, although differences are observed in activity 

and also in inhibition studies [24;25]. 

Although mouse microsomes were shown to metabolize FAA, the enzymes 

responsible for their production are not presently identified. The purpose of the present study 

was therefore to identify the mouse enzymes involved in the formation of the principal FAA 

metabolites. The identification of the various mouse cytochrome P450s (Cyps, in lower case 

for mice) was accomplished using Cyp-specific inhibitors, and the implication of epoxide 

hydrolase was tested using elaidamide, a specific epoxide hydrolase inhibitor. In addition, 

because flavonoids have been shown to influence the expression of several Cyps after in vivo 

administration [26], the influence of FAA treatment in mice on the expression of the principal 

hepatic Cyps was also investigated using quantitative RT-PCR. We have found that different 

sets of Cyps are involved in the formation of specific FAA metabolites and that FAA was 

shown to induce several hepatic Cyps after in vivo administration in mice. 
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MATERIALS A!D METHODS 

Chemicals. Flavone-8-acetic acid (FAA, LM975, NSC347512, Fig. 1-A) and FAA 

mono-hydroxylated products at position 3' or 4' were kindly provided by Dr Jean-Jacques 

Berthelon (Merck-Lipha Santé, Lyon, France). The 6-OH-FAA was synthesized as previously 

described [22] using appropriate starting material [27-29]. The 3’,4’-dihydrodiol-FAA, the 

3’,4’-epoxy-FAA and the 5,6-epoxy-FAA were generated in vitro using aroclor 1254 induced 

mouse microsomes according to the protocol described below. The following Cyp inhibitors 

were purchased from Sigma-Aldrich: furafylline (Cyp1a2), α-naphthoflavone (Cyp1b1), 

tranylcypromine (Cyp2c29, Cyp2c39), quercetin (Cyp2c29), quinidine (Cyp2d9), 

diethyldithiocarbamate (Cyp2e1) and ketoconazole (Cyp3a11). The specific epoxide 

hydrolase inhibitor elaidamide was synthesized and kindly provided by Dr Christophe 

Morisseau [30]. Aroclor 1254 was obtained from Sigma-Aldrich (Saint Quentin Fallavier, 

France). All other chemicals were obtained from commercial suppliers and were of the 

highest purity available. 

Preparation of aroclor�induced mouse microsomes. Aroclor-induced mouse 

microsomes were prepared according to the protocol described by Breinholt et al. [31]. 

Female C57Bl/6 mice, 8 weeks of age were purchased from Janvier (Le Genest-St-Isle, 

France) and acclimated for a week in our animal facility and kept on a 12 h light/dark cycle 

with free access to food. Mice were injected intraperitoneally with aroclor-1254 (500 mg/kg 

body weight) dissolved in corn oil on day 0, and 5 days later the mice were sacrificed by 

cervical dislocation after a 24 h fasting period. All animal experiments complied with the 

French regulations concerning the protection of animals used for experimental and other 

scientific purposes (D2001-486), and with the European Commission regulations (OJ of 

ECL358 12/18/1986). The hepatic microsomes were prepared as described by Guengerich 
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[32]. Briefly, the livers were immediately excised and rinsed in ice-cold KCl 1.15 % solution, 

pooled and cut into small pieces with scissors. Four volumes of 0.1 M phosphate buffer (pH 

7.4) were added and the livers homogenized using a Teflon potter at a speed of 50 rpm with 

10 strokes. The liver homogenate was centrifuged at 15,000 × g for 20 min. After lipid 

elimination, the supernatant was ultra-centrifuged at 100,000 × g during 60 min, at 4°C. The 

pellet containing the microsomes were collected, covered by a phosphate buffer containing 

20% glycerol, snap frozen on dry ice, and stored at – 80°C until use. Total microsomal protein 

was determined using the Pierce BCA Protein Assay Reagent Kit (Rockford, IL,USA). 

In vitro metabolism of FAA. Metabolism of FAA was carried out according to our 

previously described protocol [22]. In brief, FAA (8 µg/ml final concentration) was incubated 

in 300 µl TRIS-HCL 0.1 M buffer, pH 7.4, containing 0.5 mg/ml microsomal protein, 1.6 

mg/ml BSA, 5 mM MgCl2 and a NADPH generating system corresponding to 1.3 mM. The 

incubation was carried out in opened 2 ml polypropylene tubes in a shaking water bath (150 

oscillations/min) at 37°C. The reaction mixture was pre-warmed at 37°C for 3 min before the 

NADPH generating system was added and the incubation time was extended for an additional 

60 min. The generation of metabolites was linear with time up to 2 h and protein 

concentration up to 2 mg/ml of microsomal protein, therefore the conditions used in the 

inhibition experiments (1 h and 0.5 mg/ml protein) were within the linear range. The 

incubation mixture was extracted twice with 800 µl ethyl acetate containing 2% acetic acid 

(v/v), the organic phase was evaporated under nitrogen and kept in dry form at -80°C, and 

then reconstituted with 300 µl of the HPLC mobile phase immediately prior HPLC analysis. 

One hundred µl of the reconstituted residue were injected onto the Shimadzu HPLC system. 

In these incubation conditions, mouse aroclor-induced microsomes could metabolize 4.3 ± 0.3 

% of the FAA.  
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Determination of mouse Cyp enzymes involved in the FAA metabolism in vitro. 

To determine mouse Cyps involved in the FAA metabolism, FAA metabolism by aroclor-

induced mouse microsomes in vitro was carried out in absence or presence of various 

concentrations of specific Cyp inhibitors. The mouse Cyp orthologs corresponding to their 

human CYP counterparts are as follows [23]: Cyp1a2, CYP1A2; Cyp1b1, CYP1B1; Cyp2b9, 

CYP2B6; Cyp2c39, CYP2C19; Cyp2d9, CYP2D6; Cyp2e1, CYP2E1; Cyp3a11, CYP3A4. 

The specific Cyp inhibitors used were: furafylline (Cyp1a2), α-naphthoflavone (Cyp1b1) 

[33], tranylcypromine (Cyp2c29), quinidine (Cyp2d9) [34], diethyldithiocarbamate (Cyp2e) 

[35] and ketoconazole (Cyp3a11) [36]. Furafylline, α-naphthoflavone and ketoconazole were  

dissolved in DMSO, quercetin was dissolved in methanol, and tranylcypromine, quinidine, 

and diethyldithiocarbamate were dissolved in Tris-HCl buffer. Appropriate controls were run 

for the solvents which did not exceed 2% in volume in the control tube and in the test tube. 

The choice of inhibitors range concentrations were based on Bogaards et al. [24] (and 

references therein). The inhibitors were added to the incubation mixture containing 

microsomes 10 min before the addition of the NADPH generating system. The incubation and 

extraction conditions were carried out as described above for aroclor-induced mouse 

microsomes. 

Epoxide hydrolase inhibition. Because the 3’,4’-dihydrodiol-FAA was likely 

generated from the hydolysis of the 3’,4’-epoxy-FAA by the epoxide hydrolase, we 

determined the role of this enzyme using elaidamide, an epoxide hydrolase inhibitor [30], at 

final concentrations of 2, 4 and 10 µM. 

!on�enzymatic transformations. Non-enzymatic transformations during FAA 

metabolism incubation were determined by analysis of transformation of FAA metabolites in 

PBS buffer. FAA metabolites extract was reconstituted in 300 µl PBS buffer incubated at 
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37°C in a shaking water bath and injected onto the Shimadzu HPLC system at time 0 and 60 

min. 

Evaluation of direct or indirect hydroxylation. In order to determine if FAA 

monohydroxylates were formed directly from FAA or indirect via epoxidation (Guengerich et 

al., 2003), FAA metabolism by aroclor-1254 induced mouse microsomes was carried out in 

presence of the epoxide scanvenger N-acetyl cysteine (NAC) according to the protocol 

described by Bu et al. [37]. In brief, NAC was added to the the pre-warmed incubation 

mixture at a final concentration of 7.5 mM. FAA metabolites and NAC adducts were further 

analyzed on the LC/MS systems described below. 

HPLC�UV and HPLC�UV�MS conditions. Two HPLC systems were used during 

this project. The first, HPLC-UV system was a Shimadzu CLASS-VP
®
 (version 5.3), 

equipped with a C18 column (Beckman Ultrasphere ODS, 5 µm; 4.6 × 25 mm) thermostated at 

20°C, and a UV detector set at 300 nm. The mobile phase consisted of a solution of 26% 

methanol, 19% acetonitrile, 55% aqueous acetic acid (2%), at a flow rate of 1 ml/min. The 

second system of LC-MS/MS consisted of a Surveyor


 HPLC equipped with a UV diode 

array detector and was coupled with a mass spectrometer (LCQ-Advantage


, 

ThermoElectron). The mass spectrometer consisted of an electrospray ionization system used 

in positive ion polarity mode and a quadrupole ion trap mass analyzer. The operating 

parameters where as follows: the spray needle voltage was set at 4.0 kV and the spray was 

desolvated with a nitrogen sheath gas. Electrospray capillary voltage was 4.0 V, nitrogen was 

used as auxilliary gas and the capillary temperature was 250°C. A C18 reversed phase column 

(EC. 250/2 Nucleodur Sphinx RP, 5 µm, 250 mm X 2.1 mm, Macherey-Nagel) thermostated 

at 30°C was used. The metabolites were resolved using the following tertiary gradient: from 0 

to 25 min: 7-24% methanol; 4-13 % acetonitrile; 89-63 % TFA 0.1 %. From 25 to 40 min: 24-

26 % methanol; 13-14 % acetonitrile; 63-60 % TFA 0.1 %. From 40 to 42 min: 26-45 % 
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methanol; 14-22 % acetonitrile; 60-33 % TFA 0.1 %. From 42 to 47 min: 45 % methanol; 22 

% acetonitrile; 33 % TFA 0.1 %. From 47 to 49 min: 45-7 % methanol; 22-4 % acetonitrile; 

33-89 % TFA 0.1 %. And, finally from 49 to 75 min: 7 % methanol; 4 % acetonitrile; 89 % 

TFA 0.1 %. Flow rate was 0.2 ml/min. Volume of injection was 50 µl. The Xcalibur
®
 

software was used for data acquisition and analysis. 

In vivo treatment with standard Cyp inducers and FAA. Female C57Bl/6 mice, 8 

weeks of age were purchased from Janvier (Le Genest-St-Isle, France) and acclimated for a 

week in our animal facility and kept on a 12 h light/dark cycle with free access to food. The 

mice were injected i.p. (intraperitoneally) in a volume of 0.2 ml with the following inducers at 

the indicated doses and schedules (five mice per group): Control A mice received 0.9% saline 

i.p. for 3 consecutive days; Control B mice received corn oil i.p. on 3 consecutive days; 3-

Methylcholanthrene, 80 mg/kg, i.p., suspended in corn oil was administered for 3 consecutive 

days (Monday, Tuesday, Wednesday) [38], β-naphthoflavone, 80 mg/kg/day, i.p., suspended 

in corn oil, for 3 consecutive days [39]; Dexamethasone, 100 mg/kg/day, i.p., suspended in 

corn oil, for 3 consecutive days [39]; for all the previous treatments, the mice were sacrificed 

on the fifth day after an overnight fasting. Aroclor 1254 (500 mg/kg, dissolved in corn oil) 

was administered on day 1, and the mice were sacrificed on the 5th day after an overnight 

fasting [31]. Phenobarbital was administered in drinking water (0.1 %) for 10 days, and the 

mice were sacrificed on the 11th day after an overnight fasting. For FAA, two treatment 

schedules were tested: FAA treatment A, consisted of one i.p. one dose on day 1 (180 mg/kg), 

and the mice were sacrificed on day 5 after an overnight fasting [3;4] FAA treatment B 

included 3 i.p. administration (at 180 mg/kg each) on days 1, 3 and day 5, and the mice were 

sacrificed on day 9 after an overnight fasting [3;4]. Immediately upon sacrificing the mice 

(CO2), the liver was quickly removed, rinsed with ice cold PBS, and aliquots of each liver 
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lobe were immediately transferred to a tube containing a RNAlater solution (QIAGEN) and 

were kept at 4°C for further extraction of total RNA.  

Quantitative RT�PCR. Extraction of total RNA was accomplished using RNable 

(Eurobio), and one microgram of total RNA, as measured with Ribogreen measurement, was 

reverse transcribed in a final volume of 20 µl containing 4 µL of 5 X RT buffer, 20 units of 

RNasin RNase inhibitor (Promega), 10 mM DDT, 100 units of Superscript II RNase H- 

reverse transcriptase (Invitrogen), and 3 mM random hexamers (Invitrogen). The samples 

were incubated at 20°C for 10 min, 42 °C for 30 min, and 99 °C for 5 min. Real-time PCR 

reactions were carried out using ABI PRISM 7900HT Sequence
 
Detection System (Applied 

Biosystems) in a 384-well,
 
clear optical reaction plate with optical adhesive covers (Applied

 

Biosystems). The PCR primers for the genes of interest were designed with the Oligo6 

software using the GenBank reference sequences (Table 1). They were chosen in such a 

manner to be in distinct exons, to ensure a specific cDNA versus genomic DNA 

amplification, and their specificity was assessed using the NCBI BLAST website. Reactions 

were run in a 5 µl volume in duplicate, with 2 µL of cDNA solution, 2.5 µL of Power SYBR 

Green Master Mix
 
(Applied Biosystems) and 0.5µL of 10 µM primers solution.

 
The PCR 

program was: 95°C for 10 min, followed by 45 cycles of (15 seconds at 95°C; 1 min at 60°C). 

Cycle threshold
 
values were obtained from the ABI PRISM 7900 SDS software. For each 

PCR well, raw fluorescence data were exported and a curve-fitting method was applied to 

evaluate the individual efficiencies [40]. For each target the efficiency was considered as 

shared for all wells. This efficiency was set as the mean of the fitted individual efficiencies. 

Individual Ct values exported from the SDS software were used to calculate the relative 

expression level of target t in sample S:
s

tsCt

t

�

eff
),(

st,L

−

= , Ns being the normalization factor for 

sample S, here corresponding to the total cDNA level as measured with Oligreen. Oligreen 
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fluorescence measurements were carried out using the ABI PRISM 7900HT Sequence
 

Detection System. Reactions were run in a 10 µl volume in triplicate, with 5µL of cDNA 

solution and 5 µL of Oligreen stock solution (Invitrogen) 200x diluted in TE buffer. 

Fluorescence was continuously read at 80°C for 30 sec, a condition which ensures exclusive 

cDNA measurement [41].  
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RESULTS 

FAA metabolism using aroclor�induced mouse microsomes. Figure 1-A presents 

the structures of FAA metabolites formed by aroclor-induced mouse microsomes, and Figure 

1-B depicts a typical HPLC-UV chromatogram of FAA and its major phase I metabolites. The 

parent compound FAA eluted at 17.1 min, whereas the six previously identified metabolites 

[22], that were all more hydrophilic than FAA, eluted at the following retention times in this 

reversed-phase HPLC system (Figure 1-B): 3',4'-dihydrodiol-FAA (Rt 4.1 min); 5,6-epoxy-

FAA (Rt 7.6 min); 4'-OH-FAA (Rt 9.0 min); 3’-OH-FAA (Rt 10.0 min); 3’,4’-epoxy-FAA 

(Rt 11.2 min); and 6-OH-FAA (Rt 12.3 min). Among these metabolites, the two FAA 

epoxides (5,6-epoxy-FAA and 3’,4’-epoxy-FAA) were the predominant ones, representing 

36.3 ± 1.1 % and 26.7 ± 1.5 % of the total metabolite area, respectively (as evaluated at 300 

nm). The 3',4'-dihydrodiol-FAA, the 4'-OH-FAA, the 3'-OH-FAA and the 6-OH-FAA, 

represented 14.0 ± 0.6 %, 6.8 ± 0.6 %, 1.6 ± 0.6 % and 14.5 ± 1.0 % (n = 3) of the total 

metabolite area, respectively. 

 Mouse Cyp enzymes involved in FAA metabolism. In order to identify the mouse 

Cyps involved in FAA metabolism, incubations were carried out in absence or presence of 

increasing concentrations of the Cyp-specific inhibitors presented in Table 2. The possible 

interference between FAA metabolites and inhibitors (or their possible metabolites) was also 

assessed by incubating the inhibitors alone with mouse microsomes.  

 Furafylline, a Cyp1a2 inhibitor, was tested in the concentration range of 5, 10, 20 and 

50 µM. In absence of furafylline, all the above identified FAA metabolites were detected (Fig. 

2-A). In presence of furafylline (Rt, 5.2 min), which did not interfere with the elution profile 

of FAA metabolites (Fig. 2-B), all the FAA metabolites were reduced up to maximal values 

of 36 to 57% at the maximal inhibitor concentration used (50 µM) (Table 2). However, 
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because high inhibitor concentrations may lead to unspecific inhibition, the intermediate 10 

µM concentration appears as a better indicator of specific inhibition (above 20%) for the 

formation of metabolites 5,6-epoxy-FAA and 4’-OH-FAA. 

 The Cyp1b1 inhibitor α-naphthoflavone was tested at final concentrations ranging 

from 5 to 20 µM (Table 2). Most FAA metabolites were highly inhibited in presence of α-

naphthoflavone and the reduction of metabolite areas was also inhibitor concentration-

dependent with values of 70 to 89% at the maximal concentration of inhibitor (20 µM). Of 

interest, concerning the 3’,4'-epoxy-FAA, a biphasic effect was observed, as the low 

concentrations of the inhibitor (5 and 10 µM) led to an increase in the production of 3’,4'-

epoxy-FAA, whereas higher concentrations produced a maximum inhibition of 40% (Table 

2). As indicated above, because high concentrations of inhibitor may be involved in 

unspecific inhibition, it appears that at the intermediate concentration of 10 µM, the following 

metabolites were inhibited by more than 20%: 3',4'-dihydrodiol-FAA; 5,6-epoxy-FAA; 4'-

OH-FAA; and 6-OH-FAA. 

 The involvement of Cyp2b9 and Cyp2c39 was determined using the inhibitor 

tranylcypromine. All the metabolites achieved more that 40% inhibition at the the 

intermediate 50 µM concentration of the inhibitor, with the exception of the 6-OH-FAA 

(Table 2). 

 Quercetin, a Cyp2c29 inhibitor, led to a 52% inhibition of the 3',4'-dihydrodiol-FAA, a 

73% inhibition of the 5,6-epoxy-FAA and a 85% inhibition of the 6-OH-FAA at the highest 

concentration tested of 30 µM (Table 2). At the intermediate concentration of 20 µM, only 

5,6-epoxy-FAA and 6-OH-FAA were mostly inhibited with 48% and 53% inhibition, 

respectively. The chromatographic interference of quercetin with the elution of 4'-OH-FAA 

and 3', 4’-epoxy-FAA in our HPLC conditions precluded the detection of these metabolites 

with this inhibitor. However, the indirect production of these metabolites via the measurable 



 
14 

production of the 3',4'-dihydrodiol-FAA, probably generated via the 3',4'-epoxy-FAA, is an 

indirect evidence of an inhibition of these B ring metabolites. 

 The involvement of Cyp2d9 was determined using quinidine as the inhibitor. Our 

results demonstrated that Cyp2d9 was not significantly involved in the formation of any 

metabolite even at a relatively high inhibitor concentration of 10 µM which is twice the usual 

concentration employed for this inhibitor [24] (Table 2). 

 In presence of diethyldithiocarbamate, a Cyp2e1 inhibitor, the production of 5,6-

epoxy-FAA and 4’-OH-FAA was significantly inhibited (>20%) at an intermediate 

concentration of this inhibitor (100 µM) (Table 2). 

 The contribution of Cyp3a11 to the production of FAA metabolites was determined 

with the specific inhibitor ketoconazole at final concentrations ranging from 2 to 40 µM. In 

presence of low (2 µM) to moderate (4 µM) concentrations of this inhibitor, only the 3',4',-

dihydiol-FAA was highly inhibited by 75% and 88%, respectively, indicating that Cyp3a11 

was indeed involved in the formation of the 3’,4,-epoxy-FAA intermediate metabolite (Table 

2).  

Determination of direct or indirect monohydroxylation of FAA. Because the 

monohydroxylated FAA metabolites could be derived from 2 metabolic routes, i.e., a direct 

hydroxylation or an hydroxylation via an epoxidic intermediate [42], we next evaluated the 

contribution of each pathway to their formation. The metabolism of FAA was conducted in 

absence or presence of the epoxide scavenger N-acetylcysteine (NAC). Because NAC adducts 

are very hydrophilic, we had to use gradient elution conditions in order to separate the adducts 

from the other metabolites as described in Materials and Methods. 

 In absence of NAC, FAA was metabolized by aroclor-induced mouse microsomes into 

several metabolites as shown in Figure 3-A. In these highly resolutive gradient elution 

conditions, FAA metabolites were eluted at the following retention times (Rt): 3’,4’-
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dihydrodiol-FAA = 28.5 min; 5,6-epoxy-FAA = 39.7 min; 4’-OH-FAA = 43.9 min; 3’-OH-

FAA = 45.6 min; 3’,4’-epoxy-FAA = 47.4 min; 6-OH-FAA = 49.1 min; and, FAA = 56.6 min 

(Figure 3-A).  

In presence of the scavenger NAC, all metabolite peaks were reduced (Figure 3-B). 

However, the 2 epoxides and the 3’,4’-dihydrodiol-FAA peaks were more dramatically 

reduced compared to the other peaks (Figure 3-B). In parallel to the decrease of two epoxides, 

we also observed the formation of 4 new peaks at Rt of 26.4, 29.7, 30.2 and 31.5 min (Figure 

3-B). Mass spectrum analysis of these 4 new peaks presented the same molecular ion m/z 460 

[M+H]
+
 which corresponded to the molecular ion of conjugation of one FAA epoxide (MW 

296) with a molecule of NAC (MW 163) (Figure 3-C). 

 To ascertain that the NAC adducts were produced directly with the two FAA epoxides, 

and not from FAA or its monohydroxylated metabolites, we performed control incubations of 

FAA with microsomes, but without NAC (Figure 3-D) which did not show any peak at m/z 

460 [M+H]
+
. In addition, control incubations with FAA and its monohydroxylated derivatives 

(i.e., 3'-, 4'-, and 6-OH-FAA) with NAC, but without microsomes, did not yield any molecular 

ion at m/z 460 (results not shown), indicating that epoxide formation is required for the 

appearance of m/z peaks at 460. Because the presence of NAC was also accompanied by a 

complete disappearance of 3’,4’-dihydrodiol-FAA, it was therefore deduced that the latter was 

derived from its corresponding 3’,4’-epoxy-FAA. 

 As mentioned above, it was observed that in presence of NAC, the 4’-OH-FAA, the 

3’-OH-FAA and the 6-OH-FAA, were significantly reduced. The 4'-OH-FAA and the 3'-OH-

FAA peaks were reduced by 86 and 67%, respectively, whereas the 6-OH-FAA metabolite 

was diminished by 40% (Figure 3-B). However, because these peaks were not completely 

suppressed in presence of the scavenger NAC, this is an indication that direct oxidation of 

FAA to the monohydroxylated metabolites is also taking place. 
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!on�enzymatic transformation of the epoxides to their corresponding 

monohydroxylated FAA derivatives. Because the two FAA epoxides were found unstable 

and that they apparently were transformed into their corresponding mono-hydroxylated 

derivatives in the incubation conditions (pH 7.4, 37°C), we next explored the possible 

contribution of their non-enzymatic transformations to their corresponding phenolic 

compounds. To do so, FAA metabolite extracts were reconstituted in PBS buffer and 

incubated at 37°C for 1h. We observed that the peak areas of the 5,6-epoxy-FAA decreased 

by 47%, whereas the 3',4'-epoxy-FAA decreased by 15%. In parallel, their corresponding 

phenols, i.e., the 6-OH-FAA peak was doubled (100 % increase), the 4’-OH-FAA was 

increased by 70%, and the 3’-OH-FAA was increased by 171%.  It is of interest that the 

formation of the 5-OH-FAA was not observed in this experiment. It was also noteworthy that 

the 3’,4’-dihydrodiol-FAA peak area was not altered significantly, indicating that this 

dihydrodiol is not generated by simple chemical hydrolysis of the corresponding parent 

epoxide, but could be derived from an enzymatic hydrolysis. 

 Involvement of microsomal mouse epoxide hydrolase in the formation of 3’,4’�

dihydrodiol�FAA. To study the possible involvement of mouse epoxide hydrolase in the 

formation of the 3’,4’-dihydrodiol-FAA, we used elaidamide, a specific epoxide hydrolase 

inhibitor. In absence of elaidamide, all the FAA metabolites were formed, as presented in 

Figure 4-A. The first metabolite peak at Rt of 4.1 min was the 3',4'-dihydrodiol-FAA. In 

presence of elaidamide (2 to 10 µM), the 3',4'-dihydrodiol-FAA peak was reduced 

significantly (Figure 4-B) and the decrease was found to be concentration dependent of the 

epoxide hydrolase inhibitor as shown in Figure 4-C. 

 Effect of FAA treatment on the expression of the principal Cyp enzymes in mice. 

Because some flavonoids have been reported to modulate the expression of several enzymes, 

we next explored the effects of an in vivo treatment of FAA in mice on the expression of the 
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principal hepatic Cyps using quantitative RT-PCR. For comparison purposes, the following 

standard inducers were also included in these experiments: phenobarbital, β-naphthoflavone, 

3-methylcholanthrene, dexamethasone and aroclor 1254. The results are presented in Table 3 

along with those of FAA after one or three in vivo treatments. 

 As expected, phenobarbital significantly induced the expression of Cyps 2b10, 2d9 

and 3a11, by a factor of 3.2-, 2.5- and 1.6-fold, respectively (Table 3). Also as expected, β-

naphthoflavone, 3-methylcholanthrene and aroclor were all potent inducers of several Cyps of 

the family 1 (Cyp1a1, 1a2, 1b1) (Table 3). Dexamethasone could also induce the following 

Cyps: Cyp1a1 (24-fold), 1a2 (4-fold), 1b1 (3.1-fold), 2b10 (1.7-fold), 2d9 (18-fold) and 3a11 

(3.6-fold). 

 Concerning the FAA, one treatment (180 mg/kg i.p.) unexpectedly led to a marked 

reduction of Cyp 1a1, 1a2 and 1b1 transcripts (Table 3). However, after 3 FAA treatments, 

the following Cyps were significantly induced: Cyp1a2 (1.9-fold), 2e1 (2.1-fold), 2b10 (3.2-

fold), 2d9 (2.3-fold), 3a11 (2.2-fold) (Table 3). 
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DISCUSSIO! 

 Although the metabolism of FAA has been hypothesized to be involved in its 

mechanism of anticancer activity in mice [11;12], the enzymes involved in FAA metabolism 

are presently unknown. The purpose of the present work was therefore to identify the 

principal phase I enzymes involved in FAA metabolism in vitro. In addition, because several 

flavonoids have been reported to be involved in the modulation of the expression of CYP 

enzymes [26], we were also interested to evaluate the possible effect of FAA treatment on the 

expression of the main Cyps expressed in mouse liver. 

 The principal FAA metabolites formed in vitro using aroclor-induced mouse 

microsomes consisted of one dihydrodiol (3',4'-dihydrodiol-FAA), three monohydroxylated 

metabolites (3’-OH-FAA, 4'-OH-FAA, 6-OH-FAA), and two epoxides (5,6-epoxy-FAA, 

3’,4’-epoxy-FAA). Of these metabolites, the two epoxides 5,6-epoxy-FAA and 3',4'-epoxy-

FAA were the predominant ones representing 36% and 27% of the total metabolites area, 

respectively. 

 Using Cyp-specific inhibitors, we have shown that the production of several FAA 

metabolites could be significantly reduced, thus providing novel information concerning the 

Cyp families and sub-families that are mostly involved in the formation of these metabolites. 

A summary of the principal mouse Cyps involved in FAA metabolism is presented in Figure 

5. It can be noted that for the cycle A oxidation, 5,6-epoxidation was best afforded by Cyps 

1a2, 1b1, 2b9, 2c39, 2c29, and 2e1, whereas for the 6-hydroxylation, Cyps 1b1 and 2c29 were 

the most effective. For cycle B epoxidation (3’,4’-epoxy-FAA), Cyp 2b9/2c39 and 3a11 were 

the principal Cyps involved. For the formation of 4'-OH-FAA, Cyps 1a2, 1b1, 2b9 and 2e1 

were the most effective. 
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 Because monohydroxylation of phenols can also be generated through epoxide 

intermediates [42;43], we also evaluated the indirect production of the three 

monohydroxylated metabolites via an intermediate epoxide using N-acetyl cysteine as an 

epoxide scavenger. In presence of NAC, the 4’-OH-FAA, the 3’-OH-FAA and the 6-OH-

FAA, were significantly reduced, indicating that a significant percentage of these 

hydroxylated metabolites were indeed derived from the non enzymatic isomerization of their 

corresponding epoxides. The involvement of epoxide hydrolase in the formation of the 3’,4’-

dihydrodiol-FAA was also confirmed using elaidamide, a specific inhibitor of this enzyme 

[30]. 

 We were next interested to assess the influence of FAA on the expression of the 

principal hepatic Cyps after an in vivo administration in the mouse, because the expression of 

these enzymes can indeed be influenced by flavonoids [26]. Using quantitative RT-PCR, FAA 

was surprisingly found to have a dual effect, i.e., the repression of some Cyps after only one 

treatment, and the induction of other Cyps after three treatments. Concerning the repression of 

the expression of Cyps of the 1a subfamily after one in vivo treatment, this rather unexpected 

result may be due to the fact that some flavonoids may act as ligand of the aryl hydrocarbon 

receptor (AhR) at low concentrations and repress the transcription of the Cyp1a gene [44-46]. 

For the Cyp1b subfamily no evident mechanism is presently available to explain its 

repression. 

 The induction of Cyps 1a2, 2e1, 2b10, 2d9 and 3a11 after three in vivo FAA 

treatments was also interesting. High concentrations of flavonoids have been previously 

shown to function as AhR agonists and may therefore activate the transcription of the Cyp1a 

gene. Since FAA is an unsubstituted flavonoid, it is remarkable that similar unsubstituted 

flavonoids, e.g., flavone and alpha-naphthoflavone, were also found to induce CYPs 1A1, 
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1A2 and 2B1/2 [44;47]. For the other Cyp subfamilies (i.e., 2d, 2e and 3a), there is no 

published data that we are aware of, concerning the induction of these Cyps by flavonoids. 

 In conclusion, we have found that several mouse Cyps are involved in the formation of 

FAA phase I metabolites. The two main metabolites formed in vitro were the 5,6-epoxy-FAA 

and the 3',4'-epoxy-FAA which were mainly formed by Cyps 1a2, 1b1, 2b9, 2c39, 2c29, and 

2e1, for the former, and Cyps 2b9, 2c39, 3a11 for the latter. The formation of 3'-OH-FAA and 

4'-OH-FAA were mainly derived from the 3',4'-epoxy-FAA, whereas 6-OH-FAA was mainly 

formed directly (60%) by Cyps 1b1 and 2c29. After an in vivo administration of FAA in 

mice, the expression of Cyps 1a1, 1a2 and 1b1 were repressed after one treatment, whereas 

three treatments led to an induction of Cyps 1a2, 2e1, 2b10, 2d9 and 3a11. 

 The enzymes identified in FAA metabolism, as well as their in vivo induction could 

probably play a role in the remarkable anticancer activity of FAA observed in mice. Although 

only phase I enzymes were studied in the present work, the involvement of other enzymes, 

particularly phase II enzymes, could also play a role in FAA anticancer activity because some 

flavonoids have recently been reported to exert their antiproliferative activity through sulfate 

conjugation [48]. 
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Table 1. Primers used for the determination of mouse cytochrome P450s (Cyp) mR!A 

 

Cyp gene Forward primer Reverse primer 

PCR product 

(bp) 

GenBank 

number 

Cyp1a1 867-GGGAGGTTACTGGCTCTGGA 1077-TGGACATTGGCATTCTCGT 220 NM_009992 

Cyp1a2 961-CCCGAGGAGAAGATTGTCAAC 1102-CGATCCCTGCCAACCAC 158 NM_009993 

Cyp1b1 1315-TGCCTGCCACTATTACGGA 1440-GTCCCTCCCCACAACCTG 143 NM_009994 

Cyp2b10 937-GGCTTCCTGCTCATGCTC 1020-CGGTCATCAAGGGTTGGT 101 NM_009999 

Cyp2d9 1173-CGCTTTGGGGACATTGTT 1257-GTTGGGGAGGAGGATCGT 102 NM_010006 

Cyp2e1 786-CACTGGACATCAACTGCCC 947-ATGAGAATCAGGAGCCCATA 181 NM_021282 

Cyp3a11 328-GTCACAGACCCAGAGACGAT 553-TTTGCCTTCTGCCTCAAGTA 245 NM_007818 
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Table 2. Determination of mouse cytochrome P450s (Cyps) involved in the metabolism 

of FAA �������� using Cyp specific inhibitors 
a
 

Percent inhibition 

Inhibitor 

(Cyp inhibited) 

Inhibitor 

Conc. 

(µM) 

3’,4’-di-

hydrodiol-

FAA 

5,6-epoxy-

FAA 
4’-OH-FAA 

3’, 4’-epoxy 

-FAA 
6-OH-FAA 

5 - 3 ± 5 b 19 ± 3 7 ± 4 - 2 ± 5 - 3 ± 8 

10 6 ± 6 34 ±±±± 13 29 ±±±± 10 5 ± 8 19 ± 12 

20 14 ± 8 42 ± 6 35 ± 3 27 ± 5 28 ± 5 

Furafylline  

(Cyp1a2) 

50 36 ± 1 57 ± 2 52 ± 3 54 ± 3 52 ± 6 

5 10 ± 1 5 ± 5 5 ± 4 - 29 ± 6 16 ± 1 

10 50 ±±±± 1 21 ±±±± 9 32 ±±±± 20 - 18 ± 11 53 ±±±± 1 

15 76 ± 2 42 ± 4 62 ± 15 11 ± 2 73 ± 1 

αααα�naphthoflavone 

(Cyp1b1) 

20 89 ± 3 76 ± 14 70 ± 15 40 ± 16 84 ± 4 

25 4 ± 10 23 ± 3 13 ± 4 10 ± 1 - 17 ± 31 

50 45 ±±±± 8 52 ±±±± 2 44 ±±±± 5 42 ±±±± 4 10 ± 34 

75 68 ± 1 68 ± 2 57 ± 2 59 ± 2 29 ± 33 

Tranylcypromine 

(Cyp2b9, Cyp2c39) 

100 75 ± 3 74 ± 3 64 ± 7 64 ± 3 37 ± 32 

10 - 21 ± 7 26 ± 6 NDc ND 25 ± 12 

20 13 ± 7 48 ±±±± 11 ND ND 53 ±±±± 8 

25 35 ± 11 62 ± 11 ND ND 76 ± 4 

Quercetin 

(Cyp2c29) 

30 52 ± 7 73 ± 6 ND ND 85 ± 4 

10 1 ± 4 17 ± 13 - 7 ± 13 - 5 ± 9 - 23 ± 11 

50 7 ± 4 20 ± 4 5 ± 4 - 7 ± 1 - 26 ± 3 

100 15 ± 8 27 ± 1 13 ± 7 - 16 ± 5 - 17 ± 3 

Quinidine 

(Cyp2d9) 

200 39 ± 2 35 ± 5 24 ± 5 - 13 ± 0 5 ± 10 

50 - 61 ± 12 1 ± 5 17 ± 7 - 66 ± 26 - 3 ± 4 

100 - 53 ± 8 24 ±±±± 5 31 ±±±± 7 - 67 ± 16 4 ± 10 

200 - 29 ± 20 49 ± 6 54 ± 2 - 62 ± 46 34 ± 5 

Diethyldithiocarbamate 

(Cyp2e1) 

300 28 ± 15 75 ± 4 71 ± 9 11 ± 17 62 ± 2 

2 75 ± 3 17 ± 8 - 40 ± 6 - 82 ± 7 - 16 ± 2 

4 88 ±±±± 1 16 ± 1 - 20 ± 20 - 101 ± 10 - 9 ± 11 

10 94 ± 1 41 ± 5 - 32 ± 31 - 62 ± 9 2 ± 13 

20 96 ± 1 61 ± 4 25 ± 6 0 ± 7 35 ± 7 

Ketoconazole 

(Cyp3a11) 

40 97 ± 1 85 ± 1 62 ± 11 59 ± 2 78 ± 1 

a
  Microsomal incubation were carried out as described in Materials and Methods section in absence or 

presence of the indicated inhibitor concentrations. The 3'-OH-FAA is not shown because it represented 

only about 2% of total metabolites. The mouse Cyp orthologs correspondance with the human CYPs 

are as follows (mouse Cyp, human CYP): Cyp1a2, CYP1A2; Cyp1b1, CYP1B1; Cyp2b9, CYP2B6; 

Cyp2c39, CYP2C19; Cyp2d9, CYP2D6; Cyp2e1, CYP2E1; Cyp3a11, CYP3A4. 
b
 Mean ± SEM of 3 independent determination. 

c 
ND, not determined, because of inhibitor peak 

interference with these metabolites. Bold characters indicate intermediate inhibitor concentrations. 
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Table 3. Quantitative RT�PCR determination of the principal cytochrome P450s (Cyp) 

induced by standard inducers and flavone�8�acetic acid (FAA) 
a
 

Inducer 1a1
b 

1a2 1b1 2e1 2b10 2d9 3a11 

Phenobarbital 0.07 
c
± 0.04 0.75 ± 0.1 0.2 ± 0.09 1 ± 0.2 3.2 ± 0.7 2.5 ± 0.4 1.6 ± 0.1 

β-naphthoflavone 450 ± 330 30 ± 9 28 ± 8 1.1 ± 0.05 1.6 ± 0.2 2.4 ± 0.5 1.2 ± 0.3 

3-methylcholanthrene 11000 ±2900 180 ± 17 680 ± 120 1.5 ± 0.1 2.4 ± 0.7 2.9 ± 0.4 1.5 ± 0.4 

Dexamethasone 24 ± 16 4 ± 2 3.1 ± 1.7 0.78 ± 0.02 1.7 ± 0.2 18 ± 3.9 3.6 ± 1.0 

Aroclor 1254 7800 ± 2900 200 ± 39 370 ± 89 0.4 ± 0.1 8.4 ± 1.4 6.0 ± 1.4 5.5 ± 1.6 

FAA 1 treatment 0.003 ±0.001 0.08 ± 0.01 0.1 ± 0.01 0.6 ± 0.1 0.5 ± 0.08 0.5 ± 0.1 0.7 ± 0.1 

FAA 3 treatments 0.6 ± 0.3 1.9 ±±±± 1.1 1.1 ± 0.3 2.1 ±±±± 0.5 3.2 ±±±± 1.5 2.3 ±±±± 0.7 2.2 ±±±± 0.4 

a
 Levels of Cyp transcripts were determined by quantitative RT-PCR as described in the Materials and 

Methods section.  

b 
The mouse Cyp orthologs correspondance with the human CYPs are as follows (mouse Cyp, human 

CYP): Cyp1a2, CYP1A2; Cyp1b1, CYP1B1; Cyp2b9, CYP2B6; Cyp2c39, CYP2C19; Cyp2d9, 

CYP2D6; Cyp2e1, CYP2E1; Cyp3a11, CYP3A4. 

c
 Fold-induction relative to their respective controls (saline or corn oil). Mean  ± SEM of 5 

independent determinations. 
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Legends for Figures 

 

Figure 1. A) Structure of flavone-8-acetic acid (FAA) and its phase I metabolites formed in 

vitro with mouse microsomes. B) Representative HPLC-UV chromatogram of FAA and its 

metabolites. 

 

Figure 2. HPLC-UV chromatogram showing FAA metabolism in absence (A), or presence of 

the Cyp1a2 inhibitor furafylline at a final concentration of 50 µg/ml (B). 

 

Figure 3. HPLC-UV chromatogram analysis (gradient elution) for the determination of direct 

or indirect hydroxylation using N-acetylcysteine (NAC), as an epoxide scavenger. A) 

chromatogram of FAA metabolism in absence of NAC. B) Chromatogram of FAA 

metabolism in presence of NAC at 7.5 mM. C) Reconstituted chromatogram at m/z = 460 of 

FAA metabolites in presence of NAC at 7.5 mM. D) Reconstituted chromatogram at m/z = 

460 of FAA metabolism in absence of NAC. 

 

Figure 4. HPLC-UV chromatograms depicting the involvement of epoxide hydrolase in the 

production of the 3',4'-dihydrodiol-FAA. A) FAA metabolism in absence of elaidamide, an 

epoxide hydrolase inhibitor. B) FAA metabolism in presence of elaidamide (10 µM). C) 

Histogram showing the elaidamide concentration dependent decrease in the formation of the 

3’,4’-dihydrodiol-FAA. 

 

Figure 5. Schematic summary of proposed FAA phase I metabolic pathways using aroclor-

induced mouse microsomes showing the principal enzymes involved. 
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