Y. Delignon, A. Marzouki, and W. Pieczynski, Estimation of generalized mixtures and its application in image segmentation, IEEE Transactions on Image Processing, vol.6, issue.10, 1997.
DOI : 10.1109/83.624951

URL : https://hal.archives-ouvertes.fr/hal-00681507

E. Naqa, I. Grigsby, P. Apte, A. Kidd, E. Donnelly et al., Exploring featurebased approaches in PET images for predicting cancer treatment outcomes . Pattern Recogn, pp.1162-1171, 2009.

Y. Erdi, O. Mawlawi, S. Larson, M. Imbriaco, H. Yeung et al., Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding, Cancer, vol.34, issue.S12, pp.2505-2509, 1997.
DOI : 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.0.CO;2-F

M. Hatt, C. Le-rest, C. Pradier, O. Visvikis, and D. , Automatic PET tumour delineation for patient s follow-up and therapy assessment, Journal of Nuclear Medicine, vol.50, issue.S2, p.182, 2009.

M. Hatt, C. Le-rest, C. Aboagye, E. Kenny, L. Rosso et al., Reproducibility of 18F-FDG and 18F-FLT PET tumour volume measurements, Journal of Nuclear Medicine, 2010.

M. Hatt, D. Visvikis, N. Albarghach, F. Tixier, O. Pradier et al., Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology, European Journal of Nuclear Medicine and Molecular Imaging, vol.51, issue.9, pp.1191-1202, 2011.
DOI : 10.1007/s00259-011-1755-7

URL : https://hal.archives-ouvertes.fr/inserm-00574267

H. Jarritt, K. Carson, A. Hounsel, D. Visvikis, N. Krak et al., The role of PET/CT scanning in radiotherapy planning Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial, British Journal of Radiology . European Journal of Nuclear Medicine and Molecular Imaging, vol.79, issue.32, pp.27-35, 2005.

R. Krishnapuram and J. Keller, Fuzzy and possibilistic clustering methods for computer vision . SPIE Institute series, pp.133-159, 1994.

S. Larson, Y. Erdi, T. Akhurst, M. Mazumdar, H. Macapinlac et al., Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging The Visual Response Score and the Change in Total Lesion Glycolysis, Clinical Positron Imaging, vol.2, issue.3, pp.159-171, 1999.
DOI : 10.1016/S1095-0397(99)00016-3

L. Maitre and A. , Incorporating patient specific variability in the simulation of realistic whole body 18F-FDG distributions for oncology applications, Proceedings of the IEEE, 2009.

L. Pogam, A. Descourt, P. Hatt, M. Boussion, N. Visvikis et al., A combined 3-D wavelet and curvelet approach for edge preserving denoising in emission tomography, Journal of Nuclear Medicine, pp.50-52, 2009.

C. Lin, E. Itti, and C. Haioun, Early 18F-FDG PET for Prediction of Prognosis in Patients with Diffuse Large B-Cell Lymphoma: SUV-Based Assessment Versus Visual Analysis, Journal of Nuclear Medicine, vol.48, issue.10, 2007.
DOI : 10.2967/jnumed.107.042093

D. Mankoff, M. Muzi, and K. Krohn, Quantitative positron emission tomography imaging to measure tumor response to therapy: what is the best method?, Molecular Imaging & Biology, vol.5, issue.5, pp.281-286, 2003.
DOI : 10.1016/j.mibio.2003.09.002

P. Masson and W. Pieczynski, Adaptive Mixture Estimation and Unsupervised Local Bayesian Image Segmentation, IEEE Transactions on Geosciences and Remote sensing, issue.3, p.31, 1993.

C. Nahmias and L. Wahl, Reproducibility of Standardized Uptake Value Measurements Determined by 18F-FDG PET in Malignant Tumors, Journal of Nuclear Medicine, vol.49, issue.11, pp.1804-1808, 2008.
DOI : 10.2967/jnumed.108.054239

H. Necib, M. Dusart, P. Tylski, B. Vanderlinden, and I. Buvat, Detection the tumour changes between two FDG PET scans using parametric imaging, J Nucl Med Meeting Abstracts, vol.49, pp.121-161, 2008.

U. Nestle, S. Kremp, A. Schaefer-schuler, C. Sebastian-welch, D. Hellwig et al., Comparison of Different Methods for Delineation of 18F-FDG, 2005.

Z. Ouksili, Accurate PET/PET registration of serial to assess lung tumour evolution, 4th IEEE International Symposium on Biomedical Imaging, pp.732-735, 2007.

A. Peng and W. Pieczynski, Adaptive Mixture Estimation and Unsupervised Local Bayesian Image Segmentation . Graphical Models and image processing, pp.389-399, 1995.

W. Pieczynski, Mod les de Markov en traitement d images è ' . Traitement du Signal, pp.255-277, 2003.

J. Provost, Classification bathym trique en imagerie multispectrale SPOT é, 2001.

A. Shields, PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls, J Nucl Med, vol.44, pp.1432-1434, 2003.

M. Soret, S. Bacharach, and I. Buvat, Partial-Volume Effect in PET Tumor Imaging, Journal of Nuclear Medicine, vol.48, issue.6, pp.932-945, 2007.
DOI : 10.2967/jnumed.106.035774

A. Sovik, E. Malinen, and D. Olsen, Strategies for Biologic Image-Guided Dose Escalation: A Review, International Journal of Radiation Oncology*Biology*Physics, vol.73, issue.3, pp.650-658, 2009.
DOI : 10.1016/j.ijrobp.2008.11.001

P. Tylski, S. Stute, N. Grotus, K. Doyeux, S. Hapdey et al., Comparative Assessment of Methods for Estimating Tumor Volume and Standardized Uptake Value in 18F-FDG PET, Journal of Nuclear Medicine, vol.51, issue.2, pp.268-276, 2010.
DOI : 10.2967/jnumed.109.066241

URL : https://hal.archives-ouvertes.fr/inserm-00466261

P. Therasse, S. Arbuck, E. Eisenhauer, J. Wanders, R. Kaplan et al., New Guidelines to Evaluate the Response to Treatment in Solid Tumors, JNCI: Journal of the National Cancer Institute, vol.92, issue.3, pp.205-216, 2000.
DOI : 10.1093/jnci/92.3.205

P. Vaupel and A. Mayer, Hypoxia in cancer: significance and impact on clinical outcome, Cancer and Metastasis Reviews, vol.96, issue.4, pp.225-239, 2007.
DOI : 10.1007/s10555-007-9055-1

R. Wahl, H. Jacene, Y. Kasamon, and M. Lodge, From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors, Journal of Nuclear Medicine, vol.50, issue.Suppl_1, p.122, 2009.
DOI : 10.2967/jnumed.108.057307

W. Weber, S. Ziegler, R. Thodtmann, A. Hanauske, and M. Schwaiger, Reproducibility of metabolic measurements in malignant tumours using FDG PET, J Nucl Med, vol.40, issue.158, pp.1771-1777159, 1999.

W. Weber, F-FDG PET in Non-Hodgkin s Lymphoma: Qualitative or Quantitative?, 2007.