M. Macmanus, U. Nestle, and K. Rosenzweig, Use of PET and PET/CT for radiation therapy planning: IAEA expert report, 2006.

A. Chiti, M. Kirienko, and V. Gregoire, Clinical use of PET-CT data for radiotherapy planning: What are we looking for?, Radiotherapy and Oncology, vol.96, issue.3, pp.277-279, 2010.
DOI : 10.1016/j.radonc.2010.07.021

A. Van-baardwijk, G. Bosmans, and L. Boersma, PET-CT???Based Auto-Contouring in Non???Small-Cell Lung Cancer Correlates With Pathology and Reduces Interobserver Variability in the Delineation of the Primary Tumor and Involved Nodal Volumes, International Journal of Radiation Oncology*Biology*Physics, vol.68, issue.3, pp.771-778, 2007.
DOI : 10.1016/j.ijrobp.2006.12.067

K. Biehl, F. Kong, and F. Dehdashti, 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate?, J Nucl Med . Nov, vol.47, issue.11, pp.1808-1812, 2006.

D. Hellwig, T. Graeter, and D. Ukena, 18F-FDG PET for Mediastinal Staging of Lung Cancer: Which SUV Threshold Makes Sense?, Journal of Nuclear Medicine, vol.48, issue.11, pp.1761-1766, 2007.
DOI : 10.2967/jnumed.107.044362

B. Yaremko, T. Riauka, D. Robinson, B. Murray, A. Mcewan et al., Threshold modification for tumour imaging in non-small-cell lung cancer using positron emission tomography, Nuclear Medicine Communications, vol.26, issue.5, pp.433-440, 2005.
DOI : 10.1097/00006231-200505000-00007

U. Nestle, S. Kremp, and A. Schaefer-schuler, Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer, J Nucl Med . Aug, vol.46, issue.8, pp.1342-1348, 2005.

H. Yu, Y. Liu, M. Hou, J. Liu, X. Li et al., Evaluation of gross tumor size using CT, 18F-FDG PET, integrated 18F-FDG PET/CT and pathological analysis in non-small cell lung cancer, European Journal of Radiology, vol.72, issue.1, pp.104-113, 2009.
DOI : 10.1016/j.ejrad.2008.06.015

J. Stroom, H. Blaauwgeers, and A. Van-baardwijk, Feasibility of Pathology-Correlated Lung Imaging for Accurate Target Definition of Lung Tumors, International Journal of Radiation Oncology*Biology*Physics, vol.69, issue.1, pp.267-275, 2007.
DOI : 10.1016/j.ijrobp.2007.04.065

K. Wu, Y. Ung, and J. Hornby, PET CT Thresholds for Radiotherapy Target Definition in Non???Small-Cell Lung Cancer: How Close Are We to the Pathologic Findings?, International Journal of Radiation Oncology*Biology*Physics, vol.77, issue.3, pp.699-706, 2010.
DOI : 10.1016/j.ijrobp.2009.05.028

J. Yu, X. Li, and L. Xing, Comparison of Tumor Volumes as Determined by Pathologic Examination and FDG-PET/CT Images of Non???Small-Cell Lung Cancer: A Pilot Study, International Journal of Radiation Oncology*Biology*Physics, vol.75, issue.5, pp.1468-1474, 2009.
DOI : 10.1016/j.ijrobp.2009.01.019

K. Wu, Y. Ung, and D. Hwang, Autocontouring and Manual Contouring: Which Is the Better Method for Target Delineation Using 18F-FDG PET/CT in Non-Small Cell Lung Cancer?, Journal of Nuclear Medicine, vol.51, issue.10, pp.1517-1523, 2010.
DOI : 10.2967/jnumed.110.077974

M. Hatt, C. Rest, C. Aboagye, and E. , Reproducibility of 18F-FDG and 3'-Deoxy-3'-18F-Fluorothymidine PET Tumor Volume Measurements, Journal of Nuclear Medicine, vol.51, issue.9, pp.1368-1376, 2010.
DOI : 10.2967/jnumed.110.078501

URL : https://hal.archives-ouvertes.fr/inserm-00537774

A. Schaefer, S. Kremp, D. Hellwig, R. C. Kirsch, C. Nestle et al., A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data, European Journal of Nuclear Medicine and Molecular Imaging, vol.31, issue.11, 1989.
DOI : 10.1007/s00259-008-0875-1

J. Daisne, M. Sibomana, A. Bol, T. Doumont, M. Lonneux et al., Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms, Radiotherapy and Oncology, vol.69, issue.3, pp.247-250, 2003.
DOI : 10.1016/S0167-8140(03)00270-6

H. Yu, C. Caldwell, and K. Mah, Automated Radiation Targeting in Head-and-Neck Cancer Using Region-Based Texture Analysis of PET and CT Images, International Journal of Radiation Oncology*Biology*Physics, vol.75, issue.2, pp.618-625, 2009.
DOI : 10.1016/j.ijrobp.2009.04.043

M. Hatt, C. Le-rest, C. Descourt, and P. , Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications, International Journal of Radiation Oncology*Biology*Physics, vol.77, issue.1
DOI : 10.1016/j.ijrobp.2009.08.018

URL : https://hal.archives-ouvertes.fr/inserm-00537776

E. Naqa, I. Yang, D. Apte, and A. , Concurrent multimodality image segmentation by active contours for radiotherapy treatment planninga), Medical Physics, vol.14, issue.12, pp.4738-4749, 2007.
DOI : 10.1016/S0167-8140(01)00444-3

D. Montgomery, A. A. Zaidi, and H. , Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model, Medical Physics, vol.3, issue.2, pp.722-736, 2007.
DOI : 10.1118/1.2432404

M. Hatt, C. Le-rest, C. Turzo, A. Roux, C. Visvikis et al., A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET, IEEE Transactions on Medical Imaging, vol.28, issue.6, pp.881-893, 2009.
DOI : 10.1109/TMI.2008.2012036

URL : https://hal.archives-ouvertes.fr/inserm-00372910

S. Belhassen and H. Zaidi, A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET, Medical Physics, vol.69, issue.3, pp.1309-1324, 2010.
DOI : 10.1118/1.3301610

A. Dewalle-vignion, N. Betrouni, R. Lopes, D. Huglo, S. Stute et al., A New Method for Volume Segmentation of PET Images

T. Sebastian, R. Manjeshwar, T. Akhurst, and J. Miller, Objective PET Lesion Segmentation Using a Spherical Mean Shift Algorithm, Med Image Comput Comput Assist Interv, vol.9, issue.2, pp.782-789, 2006.
DOI : 10.1007/11866763_96

M. Hatt, C. Le-rest, C. Albarghach, N. Pradier, O. Visvikis et al., PET functional volume delineation: a robustness and repeatability study, European Journal of Nuclear Medicine and Molecular Imaging, vol.97, issue.12, pp.663-672, 2011.
DOI : 10.1007/s00259-010-1688-6

URL : https://hal.archives-ouvertes.fr/inserm-00574273

P. Thevenaz, T. Blu, and M. Unser, Interpolation revisited [medical images application], IEEE Transactions on Medical Imaging, vol.19, issue.7, pp.739-758, 2000.
DOI : 10.1109/42.875199

D. Thorwarth, X. Geets, and M. Paiusco, Physical radiotherapy treatment planning based on functional PET/CT data, Radiotherapy and Oncology, vol.96, issue.3, pp.317-324, 2010.
DOI : 10.1016/j.radonc.2010.07.012

S. Petit, H. Aerts, and J. Van-loon, Metabolic control probability in tumour subvolumes or how to guide tumour dose redistribution in non-small cell lung cancer