L. Robb, Cytokine receptors and hematopoietic differentiation, Oncogene, vol.126, issue.47, pp.6715-6723, 2007.
DOI : 10.1016/S1074-7613(00)80414-8

L. Chang and K. M. , Mammalian MAP kinase signaling cascades, Nature, vol.410, issue.6824, pp.37-40, 2001.
DOI : 10.1038/35065000

M. Filippi, F. Porteu, L. Pesteur, F. Schiavon, V. Millot et al., Requirement for mitogen-activated protein kinase activation in the response of embryonic stem cell-derived hematopoietic cells to thrombopoietin in vitro, Blood, vol.99, issue.4, pp.1174-1182, 2002.
DOI : 10.1182/blood.V99.4.1174

M. Rouyez, C. Boucheron, S. Gisselbrecht, I. Dusanter-fourt, and F. Porteu, Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway., Molecular and Cellular Biology, vol.17, issue.9, pp.4991-5000, 1997.
DOI : 10.1128/MCB.17.9.4991

L. Lordier, A. Jalil, F. Aurade, F. Larbret, and J. Larghero, Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling, Blood, vol.112, issue.8, pp.3164-3174, 2008.
DOI : 10.1182/blood-2008-03-144956

N. Vitrat, K. Cohen-solal, C. Pique, L. Couedic, J. Norol et al., Endomitosis of human megakaryocytes are due to abortive mitosis, Blood, vol.91, pp.3711-3723, 1998.

Y. Nagata, Y. Muro, and K. Todokoro, Thrombopoietin-induced Polyploidization of Bone Marrow Megakaryocytes Is Due to a Unique Regulatory Mechanism in Late Mitosis, The Journal of Cell Biology, vol.15, issue.2, pp.449-457, 1997.
DOI : 10.1016/0092-8674(91)90389-G

I. Vigon, J. Mornon, L. Cocault, M. Mitjavila, and P. Tambourin, Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily., Proceedings of the National Academy of Sciences, vol.89, issue.12, pp.5640-5644, 1992.
DOI : 10.1073/pnas.89.12.5640

M. Collado, M. Blasco, and M. Serrano, Cellular Senescence in Cancer and Aging, Cell, vol.130, issue.2, pp.223-233, 2007.
DOI : 10.1016/j.cell.2007.07.003

N. Ohtani, D. Mann, and E. Hara, Cellular senescence: Its role in tumor suppression and aging, Cancer Science, vol.104, issue.5, pp.792-797, 2009.
DOI : 10.1111/j.1349-7006.2009.01123.x

W. Mooi and D. Peeper, Oncogene-Induced Cell Senescence ??? Halting on the Road to Cancer, New England Journal of Medicine, vol.355, issue.10, pp.1037-1046, 2006.
DOI : 10.1056/NEJMra062285

J. Acosta, O. Loghlen, A. Banito, A. Guijarro, M. Augert et al., Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence, Cell, vol.133, issue.6, pp.1006-1018, 2008.
DOI : 10.1016/j.cell.2008.03.038

T. Kuilman, C. Michaloglou, L. Vredeveld, S. Douma, and R. Van-doorn, Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network, Cell, vol.133, issue.6, pp.1019-1031, 2008.
DOI : 10.1016/j.cell.2008.03.039

N. Wajapeyee, R. Serra, X. Zhu, M. Mahalingam, and M. Green, Oncogenic BRAF Induces Senescence and Apoptosis through Pathways Mediated by the Secreted Protein IGFBP7, Cell, vol.132, issue.3, pp.363-374, 2008.
DOI : 10.1016/j.cell.2007.12.032

V. Krizhanovsky, Y. M. Dickins, R. Hearn, S. Simon, and J. , Senescence of Activated Stellate Cells Limits Liver Fibrosis, Cell, vol.134, issue.4, pp.657-667, 2008.
DOI : 10.1016/j.cell.2008.06.049

A. Lin, M. Barradas, J. Stone, L. Van-aelst, M. Serrano et al., Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling, Genes & Development, vol.12, issue.19, pp.3008-3019, 1998.
DOI : 10.1101/gad.12.19.3008

C. Michaloglou, L. Vredeveld, M. Soengas, C. Denoyelle, and T. Kuilman, BRAFE600-associated senescence-like cell cycle arrest of human naevi, Nature, vol.436, issue.7051, pp.720-724, 2005.
DOI : 10.1038/nature03890

M. Serrano, A. Lin, M. Mccurrach, D. Beach, and S. Lowe, Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a, Cell, vol.88, issue.5, pp.593-602, 1997.
DOI : 10.1016/S0092-8674(00)81902-9

V. Gray-schopfer, S. Cheong, H. Chong, J. Chow, and T. Moss, Cellular senescence in naevi and immortalisation in melanoma: a role for p16?, British Journal of Cancer, vol.187, issue.4, pp.496-505, 2006.
DOI : 10.1038/sj.bjc.6603283

P. Krimpenfort, A. Ijpenberg, J. Song, M. Van-der-valk, and M. Nawijn, p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a, Nature, vol.63, issue.7156, pp.943-946, 2007.
DOI : 10.1038/nature06084

J. Munro, F. Stott, K. Vousden, G. Peters, and E. Parkinson, Role of the alternative INK4A proteins in human keratinocyte senescence: evidence for the specific inactivation of p16INK4A upon immortalization, Cancer Res, vol.59, pp.2516-2521, 1999.

C. Pantoja and M. Serrano, Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras, Oncogene, vol.18, issue.35, pp.4974-4982, 1999.
DOI : 10.1038/sj.onc.1202880

M. Braig, S. Lee, C. Loddenkemper, C. Rudolph, and A. Peters, Oncogene-induced senescence as an initial barrier in lymphoma development, Nature, vol.436, issue.7051, pp.660-665, 2005.
DOI : 10.1038/nature03841

M. Collado, J. Gil, A. Efeyan, C. Guerra, and A. Schuhmacher, Tumour biology: Senescence in premalignant tumours, Nature, vol.436, issue.7051, p.642, 2005.
DOI : 10.1038/436642a

N. Komatsu, M. Kunitama, M. Yamada, T. Hagiwara, and T. Kato, Establishment and characterization of the thrombopoietin-dependent megakaryocytic cell line, Blood, vol.87, issue.7, pp.4552-4560, 1996.

F. Porteu, M. Rouyez, L. Cocault, L. Benit, and M. Charon, Functional regions of the mouse thrombopoietin receptor cytoplasmic domain: evidence for a critical region which is involved in differentiation and can be complemented by erythropoietin., Molecular and Cellular Biology, vol.16, issue.5, pp.2473-2482, 1996.
DOI : 10.1128/MCB.16.5.2473

I. Matsumura, J. Ishikawa, K. Nakajima, K. Oritani, and Y. Tomiyama, Thrombopoietin-induced differentiation of a human megakaryoblastic leukemia cell line, CMK, involves transcriptional activation of p21(WAF1/Cip1) by STAT5., Molecular and Cellular Biology, vol.17, issue.5, pp.2933-2943, 1997.
DOI : 10.1128/MCB.17.5.2933

H. Byun, N. Han, H. Lee, K. Kim, and Y. Ko, Cathepsin D and Eukaryotic Translation Elongation Factor 1 as Promising Markers of Cellular Senescence, Cancer Research, vol.69, issue.11, pp.4638-4647, 2009.
DOI : 10.1158/0008-5472.CAN-08-4042

D. Mason, T. Jackson, and A. Lin, Molecular signature of oncogenic rasinduced senescence, Oncogene, vol.23, issue.57, pp.9238-9246, 2004.

T. Kuilman and D. Peeper, Senescence-messaging secretome: SMS-ing cellular stress, Nature Reviews Cancer, vol.46, issue.2, pp.81-94, 2009.
DOI : 10.1111/j.1474-9728.2004.00129.x

Z. Novakova, S. Hubackova, M. Kosar, L. Janderova-rossmeislova, and J. Dobrovolna, Cytokine expression and signaling in drug-induced cellular senescence, Oncogene, vol.1775, issue.2, pp.273-284, 2010.
DOI : 10.1074/jbc.M602865200

J. Coppé, K. Kauser, J. Campisi, and C. Beauséjour, Secretion of Vascular Endothelial Growth Factor by Primary Human Fibroblasts at Senescence, Journal of Biological Chemistry, vol.281, issue.40, pp.29568-29574, 2006.
DOI : 10.1074/jbc.M603307200

J. Coppé, C. Patil, F. Rodier, Y. Sun, and D. Muñ-oz, Senescenceassociated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol, vol.6, issue.12, pp.2853-2868, 2008.

I. Matsumura, K. Nakajima, H. Wakao, S. Hattori, and K. Hashimoto, Involvement of Prolonged Ras Activation in Thrombopoietin-Induced Megakaryocytic Differentiation of a Human Factor-Dependent Hematopoietic Cell Line, Molecular and Cellular Biology, vol.18, issue.7, pp.4282-4290, 1998.
DOI : 10.1128/MCB.18.7.4282

I. Min, G. Pietramaggiori, F. Kim, E. Passegue, K. Stevenson et al., The Transcription Factor EGR1 Controls Both the Proliferation and Localization of Hematopoietic Stem Cells, Cell Stem Cell, vol.2, issue.4, pp.380-391, 2008.
DOI : 10.1016/j.stem.2008.01.015

T. Harada, T. Morooka, S. Ogawa, and E. Nishida, ERK induces p35, a neuronspecific activator of Cdk5, through induction of Egr1, Nature Cell Biology, vol.3, issue.5, pp.453-459, 2001.
DOI : 10.1038/35074516

B. Choi, C. Kim, Y. Bae, Y. Lim, Y. Lee et al., p21Waf1/Cip1 Expression by Curcumin in U-87MG Human Glioma Cells: Role of Early Growth Response-1 Expression, Cancer Research, vol.68, issue.5, pp.1369-1377, 2008.
DOI : 10.1158/0008-5472.CAN-07-5222

Y. Chang, D. Bluteau, N. Debili, and W. Vainchenker, From hematopoietic stem cells to platelets, Journal of Thrombosis and Haemostasis, vol.105, issue.Suppl. 1, pp.318-327, 2007.
DOI : 10.1111/j.1538-7836.2007.02472.x

H. Motohashi, M. Kimura, R. Fujita, A. Inoue, and X. Pan, NF-E2 domination over Nrf2 promotes ROS accumulation and megakaryocytic maturation, Blood, vol.115, issue.3, pp.677-686, 2010.
DOI : 10.1182/blood-2009-05-223107

V. Baccini, L. Roy, N. Vitrat, H. Chagraoui, and S. Sabri, Role of p21Cip1/Waf1 in cell-cycle exit of endomitotic megakaryocytes, Blood, vol.98, issue.12, pp.3274-3282, 2001.
DOI : 10.1182/blood.V98.12.3274

L. Gilles, R. Guieze, D. Bluteau, V. Cordette-lagarde, and C. Lacout, P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1, Blood, vol.111, issue.8, pp.4081-4091, 2008.
DOI : 10.1182/blood-2007-09-113266

H. Raslova, V. Baccini, L. Loussaief, B. Comba, and J. Larghero, Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation, Blood, vol.107, issue.6, pp.2303-2310, 2006.
DOI : 10.1182/blood-2005-07-3005

O. Wagner-ballon, D. Pisani, T. Gastinne, M. Tulliez, and R. Chaligne, Proteasome inhibitor bortezomib impairs both myelofibrosis and osteosclerosis induced by high thrombopoietin levels in mice, Blood, vol.110, issue.1, pp.345-353, 2007.
DOI : 10.1182/blood-2006-10-054502