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Abstract

Examples of metabolic rhythms have recently emerged from studies of budding yeast. High density microarray analyses
have produced a remarkably detailed picture of cycling gene expression that could be clustered according to metabolic
functions. We developed a model-based approach for the decomposition of expression to analyze these data and to identify
functional modules which, expressed sequentially and periodically, contribute to the complex and intricate mitochondrial
architecture. This approach revealed that mitochondrial spatio-temporal modules are expressed during periodic spikes and
specific cellular localizations, which cover the entire oscillatory period. For instance, assembly factors (32 genes) and
translation regulators (47 genes) are expressed earlier than the components of the amino-acid synthesis pathways (31
genes). In addition, we could correlate the expression modules identified with particular post-transcriptional properties.
Thus, mRNAs of modules expressed ‘‘early’’ are mostly translated in the vicinity of mitochondria under the control of the
Puf3p mRNA-binding protein. This last spatio-temporal module concerns mostly mRNAs coding for basic elements of
mitochondrial construction: assembly and regulatory factors. Prediction that unknown genes from this module code for
important elements of mitochondrial biogenesis is supported by experimental evidence. More generally, these observations
underscore the importance of post-transcriptional processes in mitochondrial biogenesis, highlighting close connections
between nuclear transcription and cytoplasmic site-specific translation.
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Introduction

Cell construction requires the tight linking of various molecular

processes, from nuclear transcription to the site-specific production

of proteins. The control of the orchestration of these processes

remains poorly understood. In classical experimental conditions,

coordinated waves of transcription are difficult to observe because

of the metabolic asynchrony of the cells in growing cultures. A

yeast system with properties avoiding these difficulties was recently

described. In well-defined continuous cultures of Saccharomyces

cerevisiae, the oxygen consumption rate oscillates with a constant

period [1], implying that cell-to-cell signaling synchronizes

oxidative and reductive functions in the culture. The gene-

expression dynamics of the yeast metabolic cycle is therefore a

useful model system for studies of the lifecycle of groups of

transcripts in eukaryotic cells [2]. Indeed, microarray studies have

demonstrated periodicity in the expression of the yeast genome,

and consequently the existence of similar temporal expression

patterns in functionally connected groups of genes [3]. Genes

specifying functions associated with energy appeared to be

expressed with exceptionally robust periodicity, consistent with

the variations in the amount of dissolved oxygen in the medium of

synchronized culture. In pioneering studies [4], it was shown that

yeast mitochondrial morphology oscillates in response to energetic

demands driven by the ultradian clock output.

In this work, our purpose was to distinguish temporal gene

clusters, which may allow describing a biologically relevant

scenario of mitochondria biogenesis. Depending on the addressed

points and on the quality of the microarray data, several methods

such as SVD (Singular Value decomposition), PCA (Principal

Components Analysis), self-organizing maps, wavelet multiresolu-

tion decomposition and FFT (Fast Fourier Transform) have been

used to analyze relevant transcript data [5]. We decided to use a

model-based approach [6] to decomposition of published

expression data for the 626 oscillating nuclear genes encoding

mitochondrial proteins. We established a classification of these

genes into temporal groups, which cover the 5-hour long

metabolic cycle, and present a dynamic and global picture of

mitochondrial biogenesis. These temporal groups correlate both

with particular functional properties of the corresponding proteins

and with specific translational sites in the cell. This global

description of mitochondrial transcriptome clusters in temporal
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phases is consistent with the concept of RNA regulons, according

to which post-transcriptional RNA operons may constitute an

important element of eukaryotic genome expression [7,8].

Methods

Source of microarray data and gene selection
Microarray data from the study by Tu et al. [3] were collected

from the Gene Expression Omnibus database [9], under accession

number GSE3431. This dataset comprised the normalized gene

expression values, i.e. the median of each array (all data points)

equal 1, used by Tu et al. [3] in their pioneering analysis. Tu et al.

[3] performed microarray experiments at 25-minute intervals,

over three consecutive metabolic cycles (the length of one cycle is

,300 minutes). For each gene, expression measurements were

thus available for 36 successive time points. We considered only

those genes for which expression measurements were available and

which (i) displayed significant periodic patterns, as defined by Tu et

al. [3] (,3552 genes with a confidence level greater than 95%) and

(ii) were identified as involved in mitochondrial biogenesis, as

defined by Saint-Georges et al. [10] (,794 genes). The resulting

expression matrix comprised data for 626 genes (the complete list

is available in Dataset S1).

Model-based decomposition of periodic gene expression
patterns

EDPM algorithm. Our aim was to investigate in more detail

the published gene expression profiles obtained from yeast cell

cultures displaying highly periodic cycles in the form of respiratory

bursts. Starting from previous work [6], we developed the EDPM

algorithm (Expression Decomposition based on Periodic Models)

to analyze precisely gene expression patterns during yeast

metabolic cycles. Overview of the EDPM procedure is presented

in Figure S1. The main idea is to decompose each gene expression

profile obtained with microarray technology (vector D, Figure 1A),

into a mixture of pre-defined model patterns (matrix P, Figure 1A).

For that, the algorithm calculates a vector W of v-values, such that

the standard multiplication of vector W and matrix P, forms a

vector M that reproduces the initial vector of expression

measurements D (eq. 1 below). The v-values are determine

using an optimization procedure (see below and Figure 2 for an

illustration) and therefore indicate the contribution of each model

pattern to the expression pattern observed for a particular gene.

The data vector M matches the vector D exactly if P is a perfect

model of the biological:

D&M~W|P ð1Þ

Optimization criterion for calculating v-values. The W
vector is calculated to minimize the square of the distance between

the M and D vectors. For a given gene i, the criterion to be

optimized — i.e. numerically minimized — to find the optimum

solution of v-values vi
1; vi

2; ::; vi
K

� �
is as follows:

Si~
XT

t~1

ai
t{
XK

k~1

vi
kmk,t

 !2

zPi ð2Þ

Where, ai
t is the microarray expression measurement of gene i at

time t, mk,t is the value of model pattern k at time t, and K is the

number of model patterns (K = 15 in this study, see below). Pi is a

penalty function introduced to ensure that the sum of v-values is

equal to 1:

Pi~1{
XK

k~1

vi
k ð3Þ

Hence, the greater the value of vi
k the greater the contribution of

model pattern k to the observed expression pattern of gene i.

Finally, two others parameters controlling the amplitude and

the level of the M vector oscillatory signals are also included in the

optimization procedure (Text S1). They are not specified here for

the sake of clarity.

Model patterns. All the genes whose expression oscillates in

Tu et al. [3] dataset exhibit specific properties, as periodic signals

among 3 successive cycles and a unique period for all genes. Using

these two characteristics, we defined 15 model patterns (see

Figure 1B) according to simple cosine functions, i.e.

f tð Þ~ cos wt{Qð Þ ð4Þ

Where w = 1 (Tu et al. [3] periodic patterns have a constant period)

and t varies from 0; 6p½ � (three periods to model the three

successive metabolic cycles covered by the microarray

measurements of Tu et al. [3]). Q represents a time interval

between the different model patterns, it varies from 0; 2p½ � such

that each model pattern reaches its maximal value a different time

t. As all the model patterns differ only in terms of the time interval

between patterns, the v-values calculated by EDPM can be seen

as a kind of gene ‘‘footprint’’, indicating the time phase during the

metabolic cycle, at which the gene is strongly expressed (and/or its

mRNA is present in larger amounts).

Note that in EDPM, model patterns are pre-defined in order to

match specific properties shared by the analyzed gene expression

patterns. The more the model patterns are adaptable to the

observed gene expression measurements, the more the EDPM

optimization is efficient, i.e. the final Si value (eq. 2) is close to 0. In

Author Summary

In bacterial and eukaryotic cells, gene expression is
regulated at both the transcriptional and translational
levels. In eukaryotes these two processes cannot be
directly coupled because the nuclear membrane separates
the chromosomes from the ribosomes. Although the
transcription levels in different cellular conditions have
been widely examined, genome-wide post-transcriptional
mechanisms are poorly documented and therefore, the
connections between the two processes are difficult to
explain. In this work, the time-regulated expression of the
genes involved in the construction of the mitochondrion,
an important organelle present in nearly all the eukaryotic
cells, was scrutinized both at transcriptional and post-
transcriptional levels. We observed that temporal tran-
scriptional profiles coincide with groups of genes which
are translated at specific cellular loci. The description of
these relationships is functionally relevant since the genes
which are transcribed early in mitochondria cycles are
those which are translated to the vicinity of mitochondria.
In addition, these early genes code for essential assem-
bling factors or core elements of the protein complexes
whereas the peripheral proteins are translated later in the
cytoplasm. Also, these observations support the concerted
action of important regulatory factors which control either
the gene transcription level (transcription factors) or the
mRNA localization (mRNA-binding proteins).

The Rationale of Yeast Mitochondrial Cycle
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the case study of the YMC biological process presented here,

cosine functions appeared to be a relevant choice (Text S1). In

principle, any microarray dataset can be analyzed using the

EDPM approach, it may only required the definition of new

model patterns adapted to the gene expression characteristics.

Analysis of the sentinel genes defining the successive R/

B, R/C and Ox phases of the yeast metabolic cycle. As an

illustration, we used the EDPM algorithm to analyze the gene

expression profiles of the three sentinel genes (MRPL10, POX1 and

RPL17B) used by Tu et al. [3] to define three successive

superclusters of gene expression during the metabolic cycle: R/B

(reductive, building), R/C (reductive, charging) and Ox

(oxidative). The results are shown Figure 1C. D and M vectors

are superimposed and represented graphically in the upper part of

panel C. The initial vector of expression measurements, D,

obtained with microarray technology is plotted in orange; the M
vector, obtained by the multiplication of vector W (calculated with

EDPM) and model pattern P is plotted in red. EDPM appears to

give a smoothed representation of gene expression profiles and

hence facilitates identification of the time interval in which the

gene is mostly expressed. The v-derived ‘‘footprint’’

representations of each gene expression profile are represented

in the bottom part of panel C. As expected, they are clearly

different and reveal three distinct periods for maximal gene

expression: successive green patterns nos. 1 and 15 for the R/B

sentinel gene (MRPL10); blue pattern no. 5 for the R/C sentinel

gene (POX1); and red pattern no. 12 for the Ox sentinel gene

(RPL17B).

Time-dependent clustering using EDPM results
To cluster genes whose RNA level peaks at the same time points

in the yeast metabolic cycle (YMC), we used the v-values
obtained for each gene using EDPM algorithm (see previous

paragraph). Pearson correlation coefficients (r) were calculated

between all W vector pairs, and hierarchical cluster analysis was

applied. This classical clustering method can be summarized as

follows: (1) Distances (d) between all W vector pairs is calculated

using Pearson’s correlation analysis (d = 12r); (2) The resulting

distance matrix is thoroughly inspected to find the smallest

distance; (3) The corresponding genes are joined together in the

tree and form a new cluster; (4) The distances between the newly

formed cluster and the other genes are recalculated; (5) Steps 2, 3

and 4 are repeated until all genes and clusters are linked in a final

tree.

Search for cis-acting signals in 39 and 59 UTR sequences
We searched for cis-acting signals in 39 and 59UTR sequences,

using motifs predicted by the MatrixREDUCE algorithm [11].

For 39UTR signals, we tested several motifs identified in previous

studies [10,12] as possible binding sites for mRNA stability

regulators in Saccharomyces cerevisiae. For 59 UTR signals, we

examined upstream regions between nucleotide positions 2600

and 21 and searched for motifs between 1 and 7 nt long. We

assessed whether any of the signals were observed at a frequency

greater than that expected by chance, by calculating p-values as

described in [13] (hypergeometric distribution). We then search

the YEASTRACT database for transcription factors with DNA-

binding sites matching the motifs identified with MatrixREDUCE

[14].

Technical information
The EDPM algorithm was implemented in R programming

language (http://cran.r-project.org/) and functions were numer-

ically minimized using the quasi-Newton method (R function

available in the BASE package). Hierarchical clustering was

carried out with the ‘‘hclust’’ function (also available in R

programming language), with the ‘‘ward’’ method for gene

agglomeration. MatrixREDUCE source code is freely available

online from http://bussemaker.bio.columbia.edu/software/

MatrixREDUCE/ and was used for analyses of upstream

sequences with default parameters (see the documentation

available online for more information).

Experimental procedures
All the strains used in this study are isogenic to BY4742 (MATa;

his3D1; leu2 D0; lys2 D0; ura3D0) from the Euroscarf gene

deletion library.

Rho2. To test the maintenance of the mitochondrial genome,

the mutant cells were crossed with the rhou control strain KL14-

4A/60 (MATa his1, trp2, rhou), devoid of any mitochondrial

genome, and the diploid growth was tested on respiratory medium

containing 2% glycerol.

Growth on non fermentable media. To test mutant

respiratory growth, the cells were streaked on non-fermentable

media containing 2% glycerol, 2% ethanol or 0.5% lactate and

incubated for several days at 28 or 36uC.

Cytochrome spectra. Cytochrome absorption spectra of

whole cells grown on 2% galactose were recorded at liquid

nitrogen temperature after reduction by dithionite using a Cary

400 spectrophotometer (Varian, San Fernando, CA) [15].

Results

Periodic expression of nuclear genes involved in
mitochondria biogenesis

Most of the genes associated with mitochondria display

periodic patterns of expression during Yeast Metabolic

Cycles. Tu et al. [3] showed that yeast cells grown under

continuous and nutrient-limited conditions display highly periodic

cycles (called Yeast Metabolic Cycles or YMC), in the form of

respiratory bursts in which more than half the entire genome

(,3552 genes in S. cerevisiae) is expressed in a periodic manner.

Among these numerous genes whose mRNA level is modified

during YMC, we identified 626 genes as being involved in

mitochondrial biogenesis. These genes account for 86% of the

nuclear genes known to encode proteins found in mitochondria

[10]. This observation suggests that genes associated with the

mitochondria tend to display more periodic patterns of expression

than the other yeast genes (p-value is lower than 1610240). This

set of 626 genes was used for the following analyses.

Time-dependent gene clustering using EDPM

algorithm. To investigate in detail the published gene

Figure 1. Description of the EDPM algorithm. A: Description of the vectors (D, M and W) and the matrix (P) used by EDPM. The algorithm
calculates the vector W of v-values, using an optimization procedure (see main text and Figure S1). B: Representation of the 15 model patterns used
in this study. These models are periodic functions covering three consecutive cycles. The color code reflects the metabolic phases during which
model patterns are maximal (R/B = green; R/C = blue and Ox = red). C: Illustration of EDPM results analyzing R/B, R/C and Ox sentinel genes defined in
[3]. Initial vectors from the microarray data D are plotted in orange; the M vector, obtained by multiplying of W and P, is plotted in red. The v-values
(also referred to as v-footprints in the main text) are represented as barplots and model patterns are indicated with a color code.
doi:10.1371/journal.pcbi.1000409.g001

The Rationale of Yeast Mitochondrial Cycle
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expression profiles for the 626 genes involved in mitochondrial

biogenesis, we developed the EDPM algorithm (Expression

Decomposition based on Periodic Models, see Methods and

Figure 1) for two reasons. First, we wanted to identify precisely the

time interval in the YMC during which each mitochondrial gene is

mostly expressed. Second, we wanted to associate mitochondrial

genes into temporal classes representing distinct expression phases

during YMC. The principle of the EDPM algorithm consists in

breaking each gene expression pattern down into a mixture of

model patterns (Figure 1A and Figure S1). These model patterns

are time-delayed mathematical functions mimicking ideal

expression oscillations (1 to 15, Figure 1B). EDPM allows the

calculation of v-derived ‘‘footprint’’ representations of each gene

expression profile; these representations describe the contribution

of each model pattern to the gene expression profile analyzed and

hence, are good indicators of the time at which the RNA of the

gene peaks in abundance during the metabolic cycle (see Figure 1C

for an illustration). Note that two genes, expressed at the same

moment but with different magnitudes, may exhibit identical v-

footprints with EDPM.

The 626 genes involved in mitochondria biogenesis were

analyzed with EDPM (Dataset S2) and classified in several clusters

according to their v-footprints. Hierarchical cluster analysis (see

Methods) objectively supported a six-cluster distribution. These

clusters were named A to F. Each comprises a distinct subclass of

genes that are periodically expressed and the mRNAs in each

cluster peaks in different time windows of the metabolic cycle (see

Dataset S3 for a complete list of genes in each cluster).

In Text S1, we present detailed justifications for the use of

EDPM algorithm together with several methodological controls.

Important conclusions could be raised from these analyses. In

particular, we could demonstrate that a minimal number of 9

model patterns is required to stabilize the gene repartition into

phases A to F. Under 9, the number of model patterns was not

enough to precisely indentified the phase transitions EDPM. The

choice of 15 model patterns appeared to be a good compromise

between a precise determination of transition phases and the

computation time required to perform EDPM decomposition.

Moreover, we could observe that the EDPM criterion was

significantly smaller using the real expression data rather than

the sample data. This justified the use of EDPM for the 626 genes

analyzed in this study. All these genes exhibit periodic gene

expression profiles during the YMC (this was demonstrated by Tu

et al. [3]) and hence are compatible with the 15 model patterns

used here. Moreover, it should be noted that the final w-values

distribution is also a good indicator of the EDPM relevance. In

case of shuffle data, the w-values are homogeneously distributed,

indicating that no particular model pattern can explain the

random expression profiles (see Text S1 for an illustration).

Finally, a comparative analysis of the clustering results obtained

with EDPM w-values and other methodologies allowed us to

demonstrate that EDPM improves the dissection of the expression

temporal waves.

Clusters A to F represent different expression phases

during the metabolic cycle. The gene clusters presented in the

previous section can be distinguished by the model patterns that

contribute the most to the EDPM decompositions (see vertical

arrows, middle panel Figure 3). The 15 model patterns differ by

the time at which they reach their maximal values, so there is a

direct relationship between clusters A to F and the temporal

phases during metabolic cycle (Figure 4A). For instance, cluster A

(262 genes) and B (77 genes) comprised genes whose EDPM

decomposition preferentially followed model patterns nu1 and nu2,

respectively. The mRNAs of these genes peak at the very

beginning of the metabolic cycle (between 0 and 75 minutes).

Genes in clusters C (123 genes) and D (27 genes) mainly

conformed to model patterns nu5 and 8 and are expressed in

the middle of the metabolic cycle (between 75 and 200 minutes).

Finally, clusters E (30 genes) and F (107 genes) followed model

patterns nu11 and 13 and comprised genes that are expressed at

the end of the metabolic cycle (between 200 and 300 minutes).

Functional discrimination between mRNAs present

during phases A to F. Previous cluster analysis of the entire

microarray data set identified three superclusters of gene

expression termed R/B (reductive, building), R/C (reductive,

charging) and Ox (oxidative) [3]. Our analysis is consistent with

this three cluster organization but it offers a more refined view of

transcriptome dynamics. R/B genes are found in phases A and B,

R/C genes in phases C and D, and Ox genes in phases E and F.

To assess the biological relevance of the chronological order of the

transcriptional classes A to F, we grouped the genes involved in

mitochondria biogenesis into eleven model functional groups (see

Dataset S4 for a detailed list of genes attributed to each functional

group). Seven of these groups are shown in Figure 4B. They are

labeled ‘‘Translation machinery’’ (83 genes), ‘‘Translation

regulation’’ (47 genes), ‘‘Assembly factors’’ (32 genes), ‘‘Protein

import’’ (40 genes), ‘‘Respiratory chain complex’’ (34 genes),

‘‘TCA cycle’’ (21 genes) and ‘‘Amino acid synthesis’’ (31 genes).

We determined the percentage of genes in each biological function

that belong to each temporal class A to F and there was a clear

chronological distribution, highly biologically relevant (Figure 4B).

For instance, functional discrimination between phases A and B is

critical for respiratory chain complex assembly: almost all the

genes (,78%) encoding assembly factors for these complexes have

a high mRNA level in phase A (see the function named ‘‘Assembly

factors’’), whereas most genes (,56%) encoding structural units

are present in phase B (function named ‘‘Respiratory chain

complex’’). This is important because temporal discrimination

between the two gene classes probably facilitates complex

construction: assembly factors being required at the start of

subassembly intermediate formation (see, for instance, the case of

Shy1p in COX assembly [16]). More generally, mRNAs coding

for mitochondrial proteins peak at different times during the yeast

metabolic cycle. The first mRNAs to appear are those for genes

whose function is associated with the translation machinery (or

regulation) and assembly factors (Figure 4B, phase A), followed by

Figure 2. Illustration of the EDPM optimization. In this illustration, one gene expression profile is analyzed (vector D, black line) and 3 model
patterns are used (colored respectively in yellow, orange and red). They are oscillatory functions (one cycle), with constant period but different
phases. They correspond to the matrix P presented Figure 1A. The main idea is to determine the vector W of v-values such that the square distance
between the M and D vectors is minimal (i.e. the criterion Si is minimal). (1) Each v-value corresponds to one of the 3 model patterns and they are
represented using the same color code (yellow, orange and red). The procedure is initiated with identical v-values. (2) Illustration of the standard
multiplication between vector W and the model pattern matrix P. The result forms a vector M called ‘‘EDPM profile’’ (red dashed line). (3) Vectors M
(red dashed line) and D (black line) are compared, calculated the Si value. (4) The v-values are modified until the vectors M and D are as close as
possible (Si is minimal). To perform this optimization procedure, quasi-Newton method is used in EDPM. (5) Final results. The v-values indicate the
contribution of each model pattern to the real expression pattern. In this example, model pattern nu3 represents 80% of the observed signal, whereas
model patterns nu1 and nu2 represent respectively only 0 and 20%.
doi:10.1371/journal.pcbi.1000409.g002

The Rationale of Yeast Mitochondrial Cycle
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Figure 3. Cluster analysis of nuclear genes involved in mitochondrial biogenesis. Periodic gene expression data for yeast grown under
continuous, nutrient-limited conditions [3] were analyzed using the EDPM algorithm. The v-footprints (or v-values) were calculated for each of the
626 gene expression profiles and used for hierarchical cluster analysis (left). Six clusters, A to F, account for the time course of periodic expression.
They are represented along a time scale from the top (cluster A) to the bottom (cluster F). A mean v-footprint is represented for each cluster (middle)
and maximal values are indicated by vertical arrows together with the number of the associated model pattern. Correspondences between maximal
v-values and time points in the metabolic cycle are indicated by vertical arrows. Clusters A to F correspond to distinct phases during the metabolic

The Rationale of Yeast Mitochondrial Cycle
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those involved in the synthesis of the respiratory chain structural

proteins (Figure 4B, phase B) and finally mRNAs coding for

enzymes involved in amino-acid biosynthesis are more abundant

in phase F. This implies that mRNAs and probably the

corresponding mitochondrial proteins are produced sequentially

along the yeast metabolic cycle described by Tu et al. [3].

Coupling and coordination of periodic gene expression:
cross-talk between transcription and translation

Coordination between mRNA oscillations and translation

site in the cytoplasm. We compared the cellular localization of

translation of the mRNAs for genes in clusters A to F. We

previously described three classes of nuclear mRNAs encoding

mitochondrial proteins, differing in their sites of translation [10].

Class I and II mRNAs are found near mitochondria, whereas class

III mRNAs are translated on free cytoplasmic polysomes. The

subcellular localization of class I mRNAs is dependent on Puf3p,

whereas class II mRNAs are Puf3p independent. The distribution

of mRNAs of these three translation classes among the successive

temporal phases (A to F) is represented in Figure 4C. The most

salient feature is the substantial overlap between phase A and class

I genes. Class I mRNAs dominate in phase A (183 of 262 genes),

with only a few class I genes in other phases. Class II and III

mRNAs are more evenly distributed, with the frequency of class II

mRNAs being highest in phase C, and class III mRNAs being

more frequently present in phases D, E and F. These observations

imply coordination between mRNA oscillations and site of

translation in the cytoplasm. This phenomenon is the

consequence of transcriptional and post-transcriptional

regulations and is presumably controlled by complex

coordination of trans-acting factors acting on cis elements that

remain to be identified. We therefore systematically searched for

cis-acting signals in 59 and 39 UTR sequences, using several

approaches (see below).

Identification of 59 cis-regulatory elements. We

investigated the regulatory processes governing the tight

coordination of gene expression in phases A to F, by applying

the MatrixREDUCE algorithm [11]. The motif with the highest

score was CCAATCA (see Dataset S5 for complete results). This

motif is compatible with the binding site of the transcription factor

cycle [3]: clusters A and B correspond to reductive-building (R/B); clusters C and D, to reductive-charging (R/C); and clusters E and F to oxidative
activity (Ox). For each of the 6 clusters, a set of 10 typical genes is represented (left), together with their expression variations.
doi:10.1371/journal.pcbi.1000409.g003

Figure 4. Functional and translational properties of the mRNAs in the different phases of the mitochondrial cycle. A: Correspondence
between the different EDPM clusters (or phases A to F) identified in this work (Figure 3) and the major R/B, R/C and Ox phases previously identified in
the 5-hour (or 300-minutes) yeast metabolic cycle [3]. The total gene content of the different phases is indicated in Figure 3 and complete list of
genes is available in Dataset S3. Note that phase A lasts for only 25 min and contains 262 genes (41% of the 626 nuclear genes coding for
mitochondrial proteins). B: Distribution of 7 important functional families (extracted from Dataset S4) across the temporal phases A to F. The number
of genes follows the functional class name and, for each phase, the percentage (%) of genes is indicated. C: Translational properties of the 626
nuclear genes in the clusters A to F. Three translational groups of genes have recently been described [10] (see also the schematic representation in
Figure 6A). Class I mRNAs are translated on mitochondria-bound polysomes, and this localization depends on the RNA binding protein Puf3p. Class II
mRNAs are translated on mitochondria-bound polysomes, this localization does not depend on Puf3p. Class III mRNAs are translated on free
cytoplasmic polysomes. The distribution (%) of members of the six phases A to F in the three translational classes shows that most phase A mRNAs
are in class I. The color code refers to previously published work [3] describing the temporal compartmentalization of the whole genome: green = R/B,
blue = R/C, red = Ox. Note that our phase analysis generally agrees with this previous work, but it is more precise and distinguishes biologically
coherent groups of genes. For instance, we split the R/B phase into phases A and B, which clearly correspond to genes with different translational and
transcriptional properties (see the main text).
doi:10.1371/journal.pcbi.1000409.g004
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Hap4p [14], a transcriptional activator and global regulator of

respiratory gene expression. The proportion of genes belonging to

each A to F phases for which Hap4p binding sites were found in

upstream sequences is presented in Figure 5A. Nineteen % of the

genes in cluster B and 15% of the genes in cluster C contain

Hap4p binding sites. The corresponding enrichment p-values are

significant, at 361025 (cluster B) and 261024 (cluster C) (see

Methods). We analyzed other HAP genes encoding transcription

factors involved in the regulation of gene expression in response to

oxygen levels. The HAP1 gene was identified as particularly

interesting because (i) its RNA level, like that of HAP4, varies

substantially during the metabolic cycle (see Figure 5C) and (ii) the

upstream sequences of more than 15% of the genes in cluster B (p-

value = 761024) have a Hap1p binding site [14]. Thus, the

transcription factors Hap4p and Hap1p are excellent candidates to

play an important role in the regulation of the yeast metabolic

cycle.

Identification of 39 cis-regulatory elements. Our search of

regulatory elements in 39 UTR sequences used work by Foat et al.

[12], in which the authors used their MatrixREDUCE algorithm to

identify binding sites for six mRNA stability regulators in

Saccharomyces cerevisiae. The consensus sequences for these motifs are

CCUGUAAAUACCC ( = P3E), UUAUGUAUCAUA ( = P4E),

UAUAUAUUCUUA ( = PRSE), CUGAUUACACGG ( = RUPE),

UUUGAUAGACUC ( = NRSE1), UUGUGUAAUCCAUCGAU-

CAU ( = NRSE2) and determine binding specificity for several RNA-

binding proteins, including Puf3p (P3E motif) and Puf4p (P4E motif).

We assessed the potential link between the occurrence of these motifs

in 39 UTR sequences and the temporal phases A to F by calculating

the proportion of genes in each cluster with at least one motif. The

P3E, PRSE and NRSE1 motifs appeared to be significantly

overrepresented in phases A (p-value 66102120), B/C (661028)

and F (161029), respectively (Figure 5B). The P3E motif is the site

recognized by the RNA-binding protein Puf3p [12], which

contributes to localizing mRNAs close to mitochondria [10]. We

extended this observation, by considering all Puf3p targets

experimentally determined by [17] (Text S2), and observed that

more than 80% of the Puf3p mRNA targets are found in phase A.

The presence of a Puf3p motif in class A genes is fully consistent with

the translational properties of class I mRNAs: the localization of these

mRNAs near mitochondria is altered when PUF3 is deleted [10].

Novel candidate genes involved in regulation of
mitochondrial functions

This analysis leads to the prediction that unknown cluster A

genes translated in the vicinity of mitochondria in a Puf3p-

dependent way (class I) are likely to be involved in early steps of

mitochondria biogenesis. To test this experimentally, we examined

the properties of nine strains carrying deletions of uncharacterized

cluster A/class I genes (Figure 6B and Dataset S3). For each

mutant strain, we checked the ability to grow on non fermentable

carbon sources and tested the assembly of respiratory complexes

III and IV by recording cytochrome spectra (see Methods).

Disturbance of early steps of mitochondrial biogenesis —for

example replication of mitochondrial DNA, mitochondrial

transcription and translation— can affect maintenance of

mitochondrial DNA [18], we also tested whether these mutant

strains retained the mitochondrial chromosome by measuring the

production of petite cells (rho2). The phenotypes of these deleted

strains are presented in Figure 6C. Strikingly, seven out of the nine

gene-deleted strains displayed severe respiratory dysfunctions

(poor growth on non-fermentable media) and/or alterations in

their cytochrome spectra. These phenotypes strongly suggest that

most of the unknown phase A/class I genes have functions in

mitochondrial transcription/translation or assembly of respiratory

complexes. This is strongly in favour of the idea that during this

short period (phase A lasts only 25 minutes, Figure 4A), there is a

surge in the abundance of mRNAs important for mitochondrial

biogenesis and that they are translated at particular subcellular

localization.

Discussion

Gene cluster analysis and dynamics of RNA regulons in
mitochondrial biogenesis

It was recently observed [3,19] that yeast cells can be

synchronized and exhibit synchronous waves of storing and then

burning carbohydrates. Using microarrays, it was shown that

many nuclear genes coding for mitochondrial proteins, have their

mRNAs which oscillate and peak at a time when highest rate of

respiration has passed. It was suggested [19] that cells are either

rebuilding or duplicating their mitochondria at this time. We took

advantage of these data to better analyze the mitochondria

rebuilding program and identified new gene clusters reflecting

spatio-temporal groups of gene expression. Our findings are

entirely consistent with the notion of RNA regulons [7,8],

according to which mRNA-binding proteins (RBP) play an

important role, coordinating the various post-transcriptional

events. We show here that 262 mRNAs coding for important

mitochondrial proteins (assembly factors, ribosomal proteins,

translation regulators) are coordinately and periodically present

in increasing amounts early in the mitochondrial cycle (phase

A = 25 minutes). In addition, most of these mRNAs are specifically

localized in the vicinity of mitochondria under the control of the

protein Puf3p. This suggests that during this particular time-

window, Puf3p acts in the control of mRNA localization/

translation. During the rest of the mitochondrial cycle, Puf3p

Figure 5. Cis- and trans-acting elements of the mitochondrial cycle: transcriptional and post-transcriptional regulations. The upper
line shows the correspondence between the previously defined metabolic phases (R/B, R/C, Ox, [3]) and the phases A to F defined in this work as
relevant to the 626 oscillating nuclear genes, which code for mitochondrial proteins. The colors of the bar reflect the corresponding phases of the
metabolic cycle (green = R/B; blue = R/C; red/brown = Ox). A and B show the percentage of genes in each phases A to F that contain cis-acting
regulatory motif in 59 and 39 UTR regions, respectively. The significant motifs were identified using various bioinformatic tools (MatrixREDUCE [11],
YEASTRACT [14]) or from published motifs whose consensus sequences are P3E = CCUGUAAAUACCC, PRSE = UAUAUAUUCUUA, NRSE1 = UUU-
GAUAGACUC [12]. C: Oscillating concentrations of HAP4 and HAP1 mRNAs analyzed with EDPM. They were found to peak during phases A and C,
respectively. HAP1 mRNA peaks when the dissolved oxygen concentration is maximum (phase R/C of Tu et al. [3]). This is in agreement with observed
oxygen-dependent transcription regulation of HAP1 (see the main text). The only known trans-acting factor recognizing the 39 motif P3E is Puf3p
[10,12,17]. PUF3 mRNA does not significantly oscillate and could not be precisely assigned to a particular phase of the mitochondrial cycle (data not
shown). D: Schematic summary of the above data. The % of Puf3p target mRNAs and the abundance of the mRNAs coding for the two transcription
factors Hap4p and Hap1p are represented along one oscillatory period. The HAP4 mRNA variations coincide with the abundance of genes with a
Hap4p binding site in their promoter and the HAP1 mRNA follows the variations of dissolved O2. This is in agreement with the property of O2 sensor
previously described for Hap1p (see text).
doi:10.1371/journal.pcbi.1000409.g005
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may function (possibly in association with other RBPs) either in

mRNA degradation [20] or in the control of bud-directed

mitochondrial movement [21]. Following this early phase A,

phases B (50 minutes) and C (50 minutes) concern elements of the

fundamental mitochondrial machineries (respiratory chain com-

plexes, TCA cycle, etc.). Undoubtedly, this chronology of events

should reflect the logic of mitochondria construction.

Phase A gene expression is a fundamental step in the
mitochondrial cycle: the case of COX assembly

This point can be illustrated with the well-documented

assembly process of cytochrome c oxidase (COX) [22,23], a

fascinating process involving the sequential and ordinate

addition of 11 subunits to an initial seed consisting of Cox1p

(Table 1, ‘‘core’’ and ‘‘shield proteins’’). In addition to the

structural subunits, a large number of accessory factors are

required to build the holoenzyme. Unexpectedly, we found that

all the mRNAs for these accessory factors are relatively abundant

early in mitochondrial biogenesis, that is during phase A. Cluster

A includes genes whose expression is essential for a preliminary

step, consisting of the synthesis of all the elements (RNA

polymerase, ribosomes, translation factors) required for mito-

chondrial production of Cox1p; this step is followed by the

construction of the core enzyme (Cox1p+Cox2p+Cox3p). We

also observed that the mRNAs coding for the 18 assembly factor

transcripts involved in COX assembly [22,24] are mostly found

during phase A (Table 1, ‘‘assembly factors’’) and, in addition, all

but one are translated in the vicinity of mitochondria under the

control of Puf3p (MLR class I, [10]). The situation is very

different for structural COX proteins (shield proteins of the

complex). Except for Cox5A, all the corresponding mRNAs are

found in phase B, indicating that the corresponding genes are

expressed after those of phase A. Unlike phase A mRNAs, they

are all translated on free cytoplasmic polysomes (MLR class III,

Figure 6. Experimental validation of the EDPM cluster analysis. This cluster analysis predicts that genes whose mRNAs peak in phase A and
which are localized to mitochondria under the control of Puf3p (class I mRNAs, upper left, A) are likely to code for important elements of early steps
of mitochondrial biogenesis. Nine completely uncharacterized genes were chosen on the basis of a perfect cluster A expression profile. M vectors for
these nine genes, obtained by multiplying their EDPM vector W by the model pattern matrix P (see Figure 1) are represented in B, using a different
color for each gene. C: Phenotypic analysis of the strains deleted for each of these nine genes is presented (Wt = wild type). Cytochromes c1 and b are
part of respiratory complex III, and cytochromes aa3 are part of complex IV. Note that only two strains, YLR168C and YOR286W did not have altered
respiratory properties.
doi:10.1371/journal.pcbi.1000409.g006
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[10]). This scenario agrees with the previous biochemical

description of short intermediates [23]; especially interesting is

the observation that Cox5Ap, found here in phase A, was

previously identified as the first structural protein added to the

S2 complex [23]. The properties of COX assembly described

here are common to the other respiratory chain complexes. The

mRNAs for assembly factors mostly peak in phase A and they

are translated close to mitochondria, under the control of Puf3p;

they initiate the formation of respiratory complexes by the

successive addition of structural proteins whose mRNAs mostly

peak in phase B. This is the first evidence that, at least in the

conditions described in [3], the construction of the respiratory

chain is one of the first steps of mitochondrial biogenesis; indeed,

all the production machinery (assembly factors, translation, etc.)

Table 1. COX assembly and the mitochondrial cycle.

ORF Gene name
Functional
class

MLR = % of mRNA
associated with
mitochondria

Presence of
Puf3p binding
site in 39UTR

MLR
class

Expression phase
(This work)

ASSEMBLY
FACTORS

YBR024W SCO2 RCCasm4 73.7 Yes I B

YBR037C SCO1 RCCasm4 72.7 Yes I A

YDL107W MSS2 RCCasm4 22.5 Yes I A

YDR079W PET100 RCCasm4 15.4 Yes I A

YDR231C COX20 RCCasm4 17.8 Yes I C

YDR316W OMS1 RCCasm4* 100.0 Yes I A

YER058W PET117 RCCasm4 43.1 Yes I A

YER154W OXA1 RCCasm4* 67.4 Yes I A

YGR062C COX18 RCCasm4 45.5 Yes I F

YGR112W SHY1 RCCasm4 77.1 Yes I A

YHR116W COX23 RCCasm4 37.7 Yes I A

YIL157C COA1 RCCasm4 26.7 Yes I A

YJR034W PET191 RCCasm4 19.1 Yes I A

YLL009C COX17 RCCasm4 30.9 Yes I A

YLR204W COX24 RCCasm4 13 Yes I /

YML129C COX14 RCCasm4 22.6 Yes I A

YOR266W PNT1 RCCasm4 33.6 Yes I A

YPL132W COX11 RCCasm4 59.2 Yes I A

YPL172C COX10 RCCasm4 93.4 Yes I A

YJL003W COX16 RCCasm4 0 Yes III /

SHIELD PROTEINS YDL067C COX9 RCC-IV 0 No III /

YGL187C COX4 RCC-IV 0 No III B

YGL191W COX13 RCC-IV 0 No III B

YHR051W COX6 RCC-IV 0 No III B

YIL111W COX5B RCC-IV 0 No III /

YLR038C COX12 RCC-IV 0 No III B

YLR395C COX8 RCC-IV 0 Yes III B

YMR256C COX7 RCC-IV 0 No III B

YNL052W COX5A RCC-IV 0 No III A

CORE PROTEINS
(MITO-ENCODED)

Q0045 COX1 RCC-IV 100.0 No IV No data in Tu et al.

Q0250 COX2 RCC-IV 100.0 No IV No data in Tu et al.

Q0275 COX3 RCC-IV 100.0 No IV No data in Tu et al.

COX (cytochrome c oxidase) assembly is a highly regulated multi-step process involving discrete short-term intermediates, S1, S2, S3 [23]. The table describes the known
components involved in COX assembly and the relevant properties of the corresponding mRNAs. MLR (Mitochondria Localization of nuclear-encoded mRNA)
characteristics are from [10]; classes indicate whether the mRNAs are translated on Puf3p-dependent (class I), mitochondria-linked (class II) or on free polysomes (class
III). Phases A to C correspond to the early time-window of the mitochondrial cycle. The first step of COX assembly is the site-specific translation of the mitochondrially
encoded COX subunits. For instance, COX1 mRNA is translated under the control of the translation regulators MSS51 and PET309 (both are class I mRNAs present during
phase A, Dataset S3). The second step is the addition of Cox5p and Cox6p; note that Cox5p is the only structural subunit belonging to phase A, consistent with its role in
early assembly step [25]. The last step is the addition of the rest of the nuclear-encoded subunits (shield proteins). These two last steps require the presence of the
assembly factors. Note that most of the assembly factor transcripts appear during phase A, whereas the shield protein transcripts are present during phase B. In
addition, assembly factor transcripts are localized to the vicinity of mitochondria (MLR, class I) and depend on Puf3p for this localization. Shield protein transcripts are
translated on free polysomes (MLR class III) and have no Puf3p binding site.
doi:10.1371/journal.pcbi.1000409.t001
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are available in phase A to produce and assemble the protein

complexes in phase B.

Transcriptional and post-transcriptional regulations
alternate through the mitochondrial cycle

Genes coding for mitochondrial proteins can be classified into

two different regulatory systems. This dichotomy is well

illustrated in the case of OXPHOS complexes coding genes.

The first class corresponds to mRNAs translated to the vicinity

of mitochondria, mainly present in phase A and which code, for

instance, for assembly factors. Genes of the second class code for

structural proteins, and are found mainly in phases B or C

during which transcription regulation is the major mechanism.

Previous studies suggested that genes coding for assembly factors

are not transcriptionally regulated [25]. We confirmed and

extended these preliminary observations by showing that genes

encoding assembly factors: (i) are expressed before genes

encoding structural proteins, (ii) have a functional Puf3p binding

site which controls localization/translation to the vicinity of

mitochondria and may thus generate discrete foci on the matrix

face of the mitochondrial membrane, and (iii) do not contain

any evident signals in their 59UTR, a feature which distin-

guishes them from the genes encoding structural proteins. The

mRNAs for translation and assembly factors are all expressed

only during phase A, but mRNAs for structural proteins are

found during phases A, B and to a lesser extent C. This is likely

to reflect the timing of the building of the various complexes.

Thus, for instance, COX assembly requires an intact functional

ATPase [22], which is in agreement with the fact that mRNAs

for ATPase structural proteins are mostly found in phase A (see

Dataset S4) whereas the COX equivalents are mostly in phase B

(see Dataset S4). Also, unlike genes encoding assembly factors,

genes coding for structural proteins of the respiratory chain

complexes are mainly controlled transcriptionally. According to

the environmental conditions, either Hap4p (depending on

carbon availability [26,27]) or Hap1p (depending on oxygen

concentration [28]), regulate the transcription of nuclear genes

coding for structural proteins. Binding sites for these two

transcription factors are present significantly more frequently

than expected from a random distribution in the genes of

clusters A, B and C (Figure 5A). In addition, the amounts for

both HAP4 mRNA and HAP1 mRNA also oscillate and peak in

phases A and C, respectively (Figure 5C). HAP1 mRNA

variation is interesting because Hap1p can repress its own

transcription and may act either as a repressor or as an

activator, depending on oxygen levels [29]. It was observed that

fluctuating levels of O2 dissolved in the culture, indicates

changing activities of mitochondrial oxygen consumption and

cellular redox switching [30]. Thus, Hap1p, which is an

oscillating redox sensor, is an excellent candidate to signal the

transition between non-respiratory rebuilding and respiratory

phases (Figure 5D).

Overall, we report a comprehensive picture of the biogenesis of

yeast mitochondria and illustrate spatio-temporal differences

between groups of nuclear genes. The unexpected finding that

transcriptionally or post-transcriptionaly regulated groups of genes

are expressed both at different times and translated in different

places may be of relevance to mitochondria in other species.

Indeed, mammalian b F1-ATPase mRNA is found in the outer

membrane and is translated, under the control of 39UTR signals

and RNA-binding proteins [31], only during cell cycle phase G2/

M [32]; this gives credence to the general applicability of our

observations. Studies with human cells are currently underway to

assess the similarities and differences between yeast and human

cells regarding these aspects of mitochondrial biogenesis.
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