A. Tefferi and W. Vainchenker, Myeloproliferative Neoplasms: Molecular Pathophysiology, Essential Clinical Understanding, and Treatment Strategies, Journal of Clinical Oncology, vol.29, issue.5, pp.573-582, 2011.
DOI : 10.1200/JCO.2010.29.8711

C. James, V. Ugo, L. Couédic, J. Staerk, J. Delhommeau et al., A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera, Nature, vol.100, issue.7037, pp.1144-1148, 2005.
DOI : 10.1182/blood-2002-09-2839

A. Tefferi, Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1, Leukemia, vol.85, issue.6, pp.1128-1138, 2010.
DOI : 10.1038/nature06866

L. Bousse-kerdilès, M. Martyré, and M. , Myelofibrosis: pathogenesis of myelofibrosis with myeloid metaplasia, Springer Seminars in Immunopathology, vol.89, issue.4, pp.491-508, 1999.
DOI : 10.1007/BF00870307

C. Walkley, G. Olsen, S. Dworkin, S. Fabb, J. Swann et al., A Microenvironment-Induced Myeloproliferative Syndrome Caused by Retinoic Acid Receptor ?? Deficiency, Cell, vol.129, issue.6, pp.1097-1110, 2007.
DOI : 10.1016/j.cell.2007.05.014

URL : https://hal.archives-ouvertes.fr/hal-00166246

C. Walkley, J. Shea, N. Sims, L. Purton, and S. Orkin, Rb Regulates Interactions between Hematopoietic Stem Cells and Their Bone??Marrow Microenvironment, Cell, vol.129, issue.6, pp.1081-1095, 2007.
DOI : 10.1016/j.cell.2007.03.055

URL : http://doi.org/10.1016/j.cell.2007.03.055

J. Lataillade, O. Pierre-louis, H. Hasselbalch, G. Uzan, C. Jasmin et al., Does primary myelofibrosis involve a defective stem cell niche? From concept to evidence, Blood, vol.112, issue.8, pp.3026-3035, 2008.
DOI : 10.1182/blood-2008-06-158386

J. Perry and L. Li, Disrupting the Stem Cell Niche: Good Seeds in Bad Soil, Cell, vol.129, issue.6, pp.1045-1047, 2007.
DOI : 10.1016/j.cell.2007.05.053

A. Spradling, D. Drummond-barbosa, and K. T. , Stem cells find their niche, Nature, vol.414, issue.6859, pp.98-104, 2001.
DOI : 10.1038/35102160

I. Oh and K. Kwon, Concise review: multiple niches for hematopoietic stem cell regulations, Stem Cells, vol.28, pp.1243-1249, 2010.

R. Schofield, The relationship between the spleen colony-forming cell and the haemopoietic stem cell, Blood Cells, vol.4, pp.7-25, 1978.

S. Morrison and A. Spradling, Stem Cells and Niches: Mechanisms That Promote Stem Cell Maintenance throughout Life, Cell, vol.132, issue.4, pp.598-611, 2008.
DOI : 10.1016/j.cell.2008.01.038

URL : http://doi.org/10.1016/j.cell.2008.01.038

M. Raaijmakers and D. Scadden, Evolving concepts on the microenvironmental niche for hematopoietic stem cells, Current Opinion in Hematology, vol.15, issue.4, pp.301-306, 2008.
DOI : 10.1097/MOH.0b013e328303e14c

S. Méndez-ferrer, T. Michurina, F. Ferraro, A. Mazloom, B. Macarthur et al., Mesenchymal and haematopoietic stem cells form a unique bone marrow niche, Nature, vol.8, issue.7308, pp.829-863, 2010.
DOI : 10.1038/nature09262

L. Calvi, G. Adams, K. Weibrecht, J. Weber, D. Olson et al., Osteoblastic cells regulate the haematopoietic stem cell niche, Osteoblastic cells regulate the haematopoietic stem cell niche, pp.841-846, 2003.
DOI : 10.1038/nature02040

Y. Katayama, M. Battista, W. Kao, A. Hidalgo, A. Peired et al., Signals from the Sympathetic Nervous System Regulate Hematopoietic Stem Cell Egress from Bone Marrow, Cell, vol.124, issue.2, pp.407-421, 2006.
DOI : 10.1016/j.cell.2005.10.041

S. Mendez-ferrer, D. Lucas, M. Battista, and P. Frenette, Haematopoietic stem cell release is regulated by circadian oscillations, Nature, vol.91, issue.7186, pp.442-447, 2008.
DOI : 10.1038/nature06685

A. Hooper, J. Butler, D. Nolan, A. Kranz, K. Iida et al., Engraftment and Reconstitution of Hematopoiesis Is Dependent on VEGFR2-Mediated Regeneration of Sinusoidal Endothelial Cells, Cell Stem Cell, vol.4, issue.3, pp.263-274, 2009.
DOI : 10.1016/j.stem.2009.01.006

M. Kiel, O. Yilmaz, T. Iwashita, O. Yilmaz, C. Terhorst et al., SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells, Cell, vol.121, issue.7, pp.1109-1121, 2005.
DOI : 10.1016/j.cell.2005.05.026

URL : http://doi.org/10.1016/j.cell.2005.05.026

S. Mendez-ferrer, T. Michurina, F. Ferraro, A. Mazloom, B. Macarthur et al., Mesenchymal and haematopoietic stem cells form a unique bone marrow niche, Nature, vol.8, issue.7308, pp.829-834, 2010.
DOI : 10.1038/nature09262

H. Kobayashi, J. Butler, O. Donnell, R. Kobayashi, M. Ding et al., Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells, Nature Cell Biology, vol.307, issue.11, pp.1046-1056, 2010.
DOI : 10.1038/ncb2108

M. Kiel and S. Morrison, Uncertainty in the niches that maintain haematopoietic stem cells, Nature Reviews Immunology, vol.10, issue.4, pp.290-301, 2008.
DOI : 10.1038/nri2279

L. Dimascio, C. Voermans, U. Mn-duncan, A. Lu, D. Wu et al., Identification of Adiponectin as a Novel Hemopoietic Stem Cell Growth Factor, The Journal of Immunology, vol.178, issue.6, pp.3511-3520, 2007.
DOI : 10.4049/jimmunol.178.6.3511

M. Martyré, L. Bousse-kerdilès, and M. , Stem Cell Dysregulation in Myelofibrosis With Myeloid Metaplasia: Current Data on Growth Factor and Transcription Factor Involvement, Seminars in Oncology, vol.32, issue.4, pp.373-379, 2005.
DOI : 10.1053/j.seminoncol.2005.04.009

E. Komura, H. Chagraoui, M. De-mas, V. Blanchet, B. De-sepulveda et al., Spontaneous STAT5 activation induces growth factor independence in idiopathic myelofibrosis: possible relationship with FKBP51 overexpression, Experimental Hematology, vol.31, issue.7, pp.622-630, 2003.
DOI : 10.1016/S0301-472X(03)00085-7

C. Desterke, C. Bilhou-nabéra, B. Guerton, C. Martinaud, C. Tonetti et al., French Intergroup of Myeloproliferative Disorders; French INSERM and European EUMNET Networks on Myelofibrosis: FLT3-mediated p38-MAPK activation participates in the control of megakaryopoiesis in primary myelofibrosis, Cancer Res, issue.8, pp.712901-712916, 2011.

E. Komura, C. Tonetti, V. Penard-lacronique, H. Chagraoui, C. Lacout et al., Role for the nuclear factor kappaB pathway in transforming growth factor-beta1 production in idiopathic myelofibrosis: possible relationship with FK506 binding protein 51 overexpression, Cancer Res, vol.65, pp.3281-3289, 2005.

S. Emadi, D. Clay, C. Desterke, B. Guerton, E. Maquarre et al., IL-8 and its CXCR1 and CXCR2 receptors participate in the control of megakaryocytic proliferation, differentiation, and ploidy in myeloid metaplasia with myelofibrosis, Blood, vol.105, issue.2, pp.464-473, 2005.
DOI : 10.1182/blood-2003-12-4415

L. Bousse-kerdilès, M. Martyré, M. Samson, and M. , Cellular and molecular mechanisms underlying bone marrow and liver fibrosis: a review, Eur Cytokine Netw, vol.19, pp.69-80, 2008.

S. Ciurea, D. Merchant, N. Mahmud, T. Ishii, Y. Zhao et al., Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis, Blood, vol.110, issue.3, pp.986-993, 2007.
DOI : 10.1182/blood-2006-12-064626

L. Bousse-kerdilès, M. Martyré, and M. , Dual implication of fibrogenic cytokines in the pathogenesis of fibrosis and myeloproliferation in myeloid metaplasia with myelofibrosis, Annals of Hematology, vol.78, issue.10, pp.437-444, 1999.
DOI : 10.1007/s002770050595

H. Chagraoui, M. Tulliez, T. Smayra, E. Komura, S. Giraudier et al., Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO, Blood, vol.101, issue.8, pp.2983-2989, 2003.
DOI : 10.1182/blood-2002-09-2839

P. Guglielmelli, R. Zini, C. Bogani, S. Salati, A. Pancrazzi et al., Molecular profiling of CD34+ cells in idiopathic myelofibrosis identifies a set of disease-associated genes and reveals the clinical significance of Wilms' tumor gene 1 (WT1) Stem Cells, pp.165-173, 2007.

C. Bogani, V. Ponziani, P. Guglielmelli, C. Desterke, V. Rosti et al., Cells from Patients with Primary Myelofibrosis, Stem Cells, vol.115, issue.8, pp.1920-1930, 2008.
DOI : 10.1634/stemcells.2008-0377

M. Xu, E. Bruno, J. Chao, S. Huang, G. Finazzi et al., Constitutive mobilization of CD34+ cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases, Blood, vol.105, issue.11, pp.4508-4515, 2005.
DOI : 10.1182/blood-2004-08-3238

G. Piaggio, V. Rosti, M. Corselli, F. Bertolotti, G. Bergamaschi et al., Endothelial colony-forming cells from patients with chronic myeloproliferative disorders lack the diseasespecific molecular clonality marker, Blood, vol.1, pp.3127-3130, 2009.

L. Teofili, M. Martini, M. Iachininoto, S. Capodimonti, E. Nuzzolo et al., Endothelial progenitor cells are clonal and exhibit the JAK2V617F mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms, Blood, vol.117, issue.9, pp.2700-2707, 2011.
DOI : 10.1182/blood-2010-07-297598