
HAL Id: inserm-00704812
https://inserm.hal.science/inserm-00704812

Submitted on 6 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spike-based population coding and working memory.
Martin Boerlin, Sophie Denève

To cite this version:
Martin Boerlin, Sophie Denève. Spike-based population coding and working memory.. PLoS Compu-
tational Biology, 2011, 7 (2), pp.e1001080. �10.1371/journal.pcbi.1001080�. �inserm-00704812�

https://inserm.hal.science/inserm-00704812
https://hal.archives-ouvertes.fr


Spike-Based Population Coding and Working Memory
Martin Boerlin1,2, Sophie Denève1,2*
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Abstract

Compelling behavioral evidence suggests that humans can make optimal decisions despite the uncertainty inherent in
perceptual or motor tasks. A key question in neuroscience is how populations of spiking neurons can implement such
probabilistic computations. In this article, we develop a comprehensive framework for optimal, spike-based sensory
integration and working memory in a dynamic environment. We propose that probability distributions are inferred spike-
per-spike in recurrently connected networks of integrate-and-fire neurons. As a result, these networks can combine sensory
cues optimally, track the state of a time-varying stimulus and memorize accumulated evidence over periods much longer
than the time constant of single neurons. Importantly, we propose that population responses and persistent working
memory states represent entire probability distributions and not only single stimulus values. These memories are reflected
by sustained, asynchronous patterns of activity which make relevant information available to downstream neurons within
their short time window of integration. Model neurons act as predictive encoders, only firing spikes which account for new
information that has not yet been signaled. Thus, spike times signal deterministically a prediction error, contrary to rate
codes in which spike times are considered to be random samples of an underlying firing rate. As a consequence of this
coding scheme, a multitude of spike patterns can reliably encode the same information. This results in weakly correlated,
Poisson-like spike trains that are sensitive to initial conditions but robust to even high levels of external neural noise. This
spike train variability reproduces the one observed in cortical sensory spike trains, but cannot be equated to noise. On the
contrary, it is a consequence of optimal spike-based inference. In contrast, we show that rate-based models perform poorly
when implemented with stochastically spiking neurons.

Citation: Boerlin M, Denève S (2011) Spike-Based Population Coding and Working Memory. PLoS Comput Biol 7(2): e1001080. doi:10.1371/journal.pcbi.1001080

Editor: Karl J. Friston, University College London, United Kingdom

Received June 20, 2010; Accepted January 12, 2011; Published February 17, 2011
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Introduction

Our senses furnish us with information about the external world

that is ambiguous and corrupted by noise. Taking this uncertainty

into account is crucial for a successful interaction with our

environment. Psychophysical studies have shown that animals and

humans can behave as optimal Bayesian observers, i.e. they

integrate noisy sensory cues, their own predictions and prior beliefs

in order to maximize the expected outcome of their actions

[1,2,3,4].

Several theoretical investigations have explored the neural

mechanisms that could underly such probabilistic computations

[5,6,7,8,9,10]. In cortical areas, sensory and motor variables are

encoded by the joint activity of populations of spiking neurons

[11,12] whose activity is highly variable and weakly correlated

[13,14]. The timing of individual spikes is unreliable while spike

counts are approximately Poisson distributed [14]. These

characteristics have inspired rate-based models that encode

probability distributions in their average firing rates and spike

count covariances. Previous studies have examined analytically

and empirically how this information can be encoded in a

population code [6,5,15,10,9,16,17,18], how it can be decoded

[19,20,5,21,10,22,23,24] and how population codes can be

combined optimally [6,25]. In particular, optimal cue combination

reduces to a simple linear combination of neural activities for a

broad family of neural variability, including Poisson or Gaussian

noise [6].

However, most of these studies neglect a crucial dimension of

perception: time. Most sensory stimuli vary dynamically in a

natural environment, which requires sensory representations to be

constructed, integrated and combined on-line [23,21]. Perceptual

inference thus cannot be based on rates or spike counts measured

during a ‘‘fixed’’ temporal window, as used in most previous

population coding frameworks. At the same time, reliable

decisions typically require an integration of sensory evidence over

hundreds of milliseconds [26,27], which largely exceeds the

integrative time constant of single neurons. It is unclear how such

leaky devices could compute sums of spike counts on the typical

time scale of perceptual or motor tasks.

The problem is even more crucial if the decision is delayed

compared to the presentation of sensory information. Sensory

variables such as the direction of motion of a stimulus can be

retained in ‘‘working memory’’ for significant periods of time even

in the absence of sensory input. Neural correlates of this working

memory appear as persistent neural activity in parietal and frontal

brain areas and exhibit firing statistics similar to those found for

sensory responses [28,27,29]. This persistent activity has been

modeled as a stable state of recurrent neural network dynamics

[30]. However, such attractors correspond to stereotyped patterns

of activity that can only represent a single stimulus value. For
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example, the memorized position of an object can be encoded by

the position of a stable ‘‘bump’’ of activity [30,31]. This would

imply though that information about the reliability of the

memorized cue is lost and cannot be used for delayed cue

combination or decision making. We hypothesize instead that

stimuli are memorized in the same format as sensory input, i.e. as a

probability distribution. The question of how probability distribu-

tions can be memorized by a population of neurons remains

largely unanswered.

Here, we approach these issues by using a new interpretation of

population coding in the context of temporal sensory integration.

We consider spikes, rather than rates, as the basic unit of

probabilistic representation. We show how recurrent networks of

leaky integrate-and-fire neurons can construct, combine and

memorize probability distributions of dynamic sensory variables.

Spike generation in these neurons results from a competition

between an integration of evidence from feed-forward sensory

inputs and a prediction from lateral connections. A neuron

therefore acts as a ‘‘predictive encoder’’, only spiking if its input

cannot be predicted by its own or its neighbors’ past activity.

We demonstrate that such networks integrate and combine

sensory inputs optimally, i.e. without losing information, and track

the stimulus dynamics spike-per-spike even in the absence of

sensory input, over timescales much longer than the neural time

constants. This framework thus provides a first comprehensive

theory for optimal spike-based sensory integration and working

memory. In contrast to rate models implemented with Poisson

spiking neurons, this model does not require large levels of

redundancy to compensate for the noise added by stochastic spike

generation.

Similar to cortical sensory neurons, model neurons respond with

sustained, asynchronous spiking activity. Spike times are variable

and uncorrelated, despite the deterministic spike generation rule.

However, in contrast to rate codes, each spike ‘‘counts’’. The trial

to trial variability of spike trains does not reflect an intrinsic source

of noise that requires averaging, but is a consequence of predictive

coding. While spike times are unpredictable at the level of a single

neuron, they deterministically represent a probability distribution

at the level of the population. This leads us to reinterpret the

notions of signal and noise in cortical neural responses.

Results

Goal of the model
In order to clarify the presentation, we will concentrate on the

following general task. Imagine a cat chasing a mouse in your

garden. The cat integrates auditory and visual information to

locate the mouse. It will combine these cues according to their

reliability. If for instance the mouse is partially covered by a bush,

i.e. there is a high uncertainty associated with the visual cue, the

cat will give a higher weight to its auditory information. If the

mouse suddenly disappears behind a tree and cannot be heard or

seen anymore, the cat should estimate the likely trajectory of the

mouse in the absence of any relevant sensory input, in order to

anticipate where the mouse is going to reappear. Finally, this

information will need to be extracted when the cat eventually

decides to catch the mouse.

The cat’s task can thus be divided into three parts (figure 1A).

First, during a sensory integration period, sensory cues about a

dynamic stimulus, xt, are combined over modalities and time in

order to get a more refined estimate about the stimulus. Second,

during a memory period, the evolution of the stimulus is predicted

and tracked while past information is kept available. Finally,

during a decoding period, the position of the mouse is extracted

from the memorized information.

We assume that the dynamic stimulus xt evolves according to a

drift-diffusion process of the form

dxt~ddtzsdWt, ð1Þ

where d and s§0 are parameters and Wt is a Wiener process.

The first term on the right-hand side of equation (1) describes the

predictable drift of the stimulus. Intuitively, it describes the

velocity of the stimulus. The second term describes stochastic and

therefore unpredictable changes in the stimulus. This is the

diffusive part of the stimulus dynamics.

Visual and auditory inputs are provided by two independent

population of neurons on two input layers, a ‘‘visual’’ layer and an

‘‘auditory’’ layer. Input neurons respond to position xt with noisy

spike trains Sa
½0,t� (auditory) and Sv

½0,t� (visual). We denote Sa
½0,t� the

auditory spike trains observed up to time t, and Sa
t the number of

spikes observed in a small temporal window ½t{dt,t� such that

Sa
½0,t�~(Sa

0,Sa
dt, . . . ,Sa

t{dt,S
a
t ). We assume that sensory input spikes

depend instantaneously on the stimulus xt and are conditionally

independent of the past, i.e. p(Sa
t ,Sa

tzdtjxt,xtzdt)~p(Sa
t jxt)

p(Sa
tzdtjxtzdt). Moreover, we consider sensory likelihoods that

belong to the exponential family of probability distributions with

linear sufficient statistics. In this case, the log probability of

observing Sa
t spikes in the auditory layer can be written as a sum of

spike counts

log p(Sa
t jxt)~

X
j

Ha
j (xt)S

a
t,jzya(xt)zW(Sa

t ), ð2Þ

where ya(xt) and Ha
j (xt) are functions of xt and W acts as a

normalization term. We will refer to Ha(xt) and ya(xt) as the

kernel and the bias of the auditory likelihood respectively. A

similar equation holds for the visual likelihood. The family of

distributions described by equation (2) captures most popular

models of neural noise including Poisson noise, Gaussian or

exponential noise, with or without correlations. In this article, we

Author Summary

Most of our daily actions are subject to uncertainty.
Behavioral studies have confirmed that humans handle
this uncertainty in a statistically optimal manner. A key
question then is what neural mechanisms underlie this
optimality, i.e. how can neurons represent and compute
with probability distributions. Previous approaches have
proposed that probabilities are encoded in the firing rates
of neural populations. However, such rate codes appear
poorly suited to understand perception in a constantly
changing environment. In particular, it is unclear how
probabilistic computations could be implemented by
biologically plausible spiking neurons. Here, we propose
a network of spiking neurons that can optimally combine
uncertain information from different sensory modalities
and keep this information available for a long time. This
implies that neural memories not only represent the most
likely value of a stimulus but rather a whole probability
distribution over it. Furthermore, our model suggests that
each spike conveys new, essential information. Conse-
quently, the observed variability of neural responses
cannot simply be understood as noise but rather as a
necessary consequence of optimal sensory integration.
Our results therefore question strongly held beliefs about
the nature of neural ‘‘signal’’ and ‘‘noise’’.

Spike-Based Population Coding and Working Memory
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assume independent Poisson noise for simplicity. In this case, the

kernels correspond to the log tuning curves, Ha(xt)~log(fa(xt))
and Hv(xt)~log(fv(xt)), where fa(xt) and fv(xt) are the visual

and auditory tuning curves (see Materials and Methods).

The two sensory input layers converge onto a recurrently connected

output layer (figure 1B) that generates a set of output spike trains,

O½0,t�. We want these output spikes to represent the posterior

probability of the position of the mouse given the visual and auditory

spike trains. For this purpose, we define an ‘‘on-line decoder’’, g(xt,t),
that reads out the information in the output population through a

leaky integration of output spikes. The advantages of such a read-out

function will be discussed shortly below. We define g(xt,t) such that

_gg(xt,t)~{lg(xt,t)z
X

j

Cj(xt)Oj(t), ð3Þ

where l is a leak term, C(xt) defines a choice of output kernels, and _gg
stands for the temporal derivative of g. The network structure and

dynamics shall ensure that this read-out approximates the log

posterior of the combined inputs:

g(xt,t)&log p(xtjSv
½0,t�,S

a
½0,t�): ð4Þ

If this equation holds, the output neurons are said to encode the

stimulus ‘‘optimally’’.

This decoder defines how the posterior probability is repre-

sented on-line (i.e. within time constant
1

l
) by the output spike

trains. However, perceptual or motor tasks might never require an

explicit read-out of probability distributions. The decoder is

therefore a theoretical construct that does not have to be

implemented in any specific neural structure.

The coding strategy for the output layer is chosen for self-

consistency, i.e. it ensures that O½0,t� can be used as input for

further processing stages. Indeed, g(xt,t) is treated as a log-

likelihood of output spike counts weighted by kernel C(xt)
(compare equations 2 and 3). Furthermore, this coding strategy

presents three additional advantages. First, it ensures that

information about the stimulus can be read out on-line and

spike-per-spike, each new spike of a neuron j adding a kernel

Cj(xt). Second, the leak term l implies that the position inferred

from all past inputs (i.e. during seconds or minutes of sensory

integrations or working memory) can be extracted within a time

window of order
1

l
(typically a few tens of milliseconds). This

enables both long sensory integration as well as fast computation

with leaky devices such as biological neurons. Finally, since the

read-out is linear in log probability, combining information from

multiple spike trains corresponds simply to using additional read-

out kernels. For example, consider another network computing the

position of the mouse based on olfactory cues. The total

information can be read out by a single decoder applied to the

output spike trains of both networks simultaneously. In effect, this

performs a product of the two posterior probabilities.

We now derive the dynamics of the output neurons that will

ensure that equation (4) holds approximately.

Network dynamics
Inference. In a first step, we need to know what an ideal

observer, i.e. an observer that performs optimal inference on the

input spikes, would know about the stimulus. We denote it as

l(xt,t):log p(xtjSv
½0,t�,S

a
½0,t�)zconst which is the unnormalized

log posterior probability of the stimulus given all inputs. Nor-

malization can be neglected since the important information about

the stimulus is contained in the shape and location of the distribution.

Figure 1. Illustrations. (A) Illustration of the network task. An auditory and a visual cue (cue 1 and 2) about a dynamic stimulus (e.g. the position of
a mouse) are integrated and combined during the integration period. During the memory period, this information is kept available such that it can be
read out over a timescale of order 1=l during the read-out period. (B) Schematic illustration of the network. The visual and the auditory cue about
stimulus xt are encoded in two independent input populations that send feed-forward inputs to the output population. The output population is
recurrently connected. The connection weights Wa Wv and Wout are functions of the input kernels Ha and Hv as well as the output kernel C. (C)
Illustration of the spike generation rule. L denotes the stimulus posterior given all inputs and G represents an approximation to L that is decoded
from the output spike trains. G should be as close as possible to L. An output spike adds a kernel to G. If its effect is to reduce the mean squared
distance between the curves (down right), the spike is fired. The spike is not generated however if it increases the distance between the two curves
(top right).
doi:10.1371/journal.pcbi.1001080.g001

Spike-Based Population Coding and Working Memory
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With the assumptions made in the previous section, we can

derive an expression for the ideal observer of the stimulus in the

limit of small dt:

_ll(xt,t)~X
j

Ha
j (xt)S

a
j (t){ya(xt)z

X
j

Hv
j (xt)S

v
j (t){yv(xt)zu(xt,t):

ð5Þ

The ideal observer performs a linear integration of the input

spikes weighted by the kernels of their likelihoods. The term u(xt,t)
describes the evolution of the log posterior in the absence of input.

As a consequence of the drift-diffusion dynamics of the stimulus,

u(xt,t) derives from a Fokker-Planck equation and takes the form

u(xt,t)~{dLxl(xt,t)zs2=2 Lxxl(xt,t)z(Lxl(xt,t))
2

� �
(see Materi-

als and Methods for details).

Output generation. Output spike trains shall be generated

such that the output read-out, g(xt,t), matches the ideal observer

l(xt,t). We first discretize the stimulus space and evaluate the

posterior at positions x~(x1,x2, . . . ,xN ), where xi corresponds to

the preferred stimulus of output neuron i. Let us denote

Li(t):l(xt,t)jxt~xi
and Gi(t):g(xt,t)jxt~xi

. Similarly, we denote

C the discretized version of the vector function kernel C(xt), such

that Cij~Cj(xi).

We propose a spike generation criterion that minimizes the

mean squared distance between L and G. It is schematically

illustrated in figure 1C. The effect of a spike of output neuron i is

to add a kernel Ci to G. A spike is generated whenever it has

the effect of reducing the mean squared distance between L and

G, i.e. if

X
j

Lj(t){Gj(t)
� �2

w

X
j

Lj(t){(Gj(t)zCji)
� �2

: ð6Þ

This criterion ensures that neurons only fire spikes to account

for new information about the stimulus that has not previously

been reported by their own or their neighbors’ activity. Avoiding

spike redundancies minimizes the metabolic cost of the code and

increases the independence among output spikes.

In contrast to other error measures such as the Kullback-Leibler

divergence, the squared distance results in a local integrate-and-

fire spike generation rule. Indeed, let us now define the

‘‘membrane potential’’ Vi(t):
P

j Cji(Lj(t){Gj(t)), which simply

is the difference between input and output log posterior, weighted

by output kernel C. We can show that the temporal evolution of

Vi(t) follows leaky integrate-and-fire dynamics (see Materials and

Methods for details)

_ViVi(t)~

{lVi(t)z
X

j

W a
ij S

a
j (t)z

X
j

W v
ijS

v
j (t){

X
j=i

W out
ij Oj(t)zUi(O,t){yi:

ð7Þ

Output neurons integrate input spikes with feed-forward

weights Wv,a~CT Hv,a and output spikes with lateral weights

Wout~CT C, where T denotes the matrix transpose. The constant

bias term yi contains information about how informative it is not

to receive a spike. Neuron i fires a spike if Vi(t)wHi, with

threshold Hi~
P

j C
2
ji=2. After firing a spike Vi(t) is reset to {Hi.

The slow currents Ui(O,t)~Yi(t)z
P

j C
T
ij Zj(t)

2 are driven by

output spikes and predict the dynamics of the stimulus. Their

temporal evolution is given by

_YY i(t) ~{lYi(t)z
P

j

VijOj(t)

_ZZi(t) ~{lZi(t)z
P

j

KijOj(t):
ð8Þ

The weights V and K are functions of the output kernel, the

leak and the stimulus dynamics: V~CT (lC{dC’z
s2

2
C’’) and

K~
sffiffiffi
2
p C

0
, where ’ denotes the partial derivative with respect to x.

Roles of the different currents. An output neuron receives

inputs through fast feed-forward connections (Wa and Wv), fast

recurrent connections (Wout) as well as slow recurrent connections

(V and K). Fast currents are ‘‘instantaneous’’ while slow currents

are integrated with the time constant of the decoder
1

l
. For the sake

of simplicity we have assumed that the membrane time constant is

the same as the time constant of the decoder. This predicts that

fast postsynaptic potentials (PSPs) are exponentials with decay l
while slow PSPs are Gamma functions (an exponential of decay l
convolved by itself). In practice, the two time constants could differ

significantly without affecting performance. In fact, leak currents

scale with V~CT (L{G) and are in general much smaller than

feed-forward and recurrent currents scaling with L or G. The

contributions of leak currents to the network dynamics are

therefore negligible (see figure 2). It follows that the membrane

potential dynamics could be much faster than the slow currents, as

would be the case for instance for NMDA and GABAB synapses.

Example contributions of the different currents are depicted in

figures 2A and 2B. Feed-forward inputs transmit new sensory

evidence about a stimulus to the output neurons. Thus, feed-forward

currents are globally positive for neurons whose preferred stimuli are

similar to the presented stimulus, and negative for neurons whose

preferred stimuli are different from it (figure 2A). In contrast, fast

recurrent inputs subtract the output population’s prediction from this

sensory input and hence have opposite signs. Neurons with globally

positive feed-forward currents receive negative fast recurrent currents,

and vice-versa. Short-range fast inhibition and long-range fast

excitation have the effect of avoiding redundancies by only letting

one output neuron transmit unaccounted information at a time.

Slow recurrent connections, on the other hand, have two distinct

roles. First, they ‘‘reintroduce’’ information that has leaked out, hence

making past information available within the time window of

integration of the decoder. It is this short-range slow excitation and

long-range slow inhibition, mediated by the recurrent connections V
(or more precisely their subpart lCT C), that enables sustained bumps

of activity in the output layer and therefore implements working

memory. The second role of the slow currents is to take into account

the non-stationary dynamics of the stimulus. For example, the

stimulus drift is predicted by a spatial derivative of the feed-forward

inputs ({dCT C
0
, a component of the lateral connections V), while

the stimulus diffusion is predicted by a bimodal current peaking at the

position of maximal slope in population response, contributed both

by V and K. Slow currents hence maintain, shift and widen the global

pattern of activity in order to predict the future state of the stimulus.

Altogether, spike generation in our model is deterministic and

results from a competition between an integration of evidence

from feed-forward and slow lateral inputs, CT L(t), and a

prediction from fast lateral connections CT G(t). A direct and

important consequence of this competition is the maintenance of

an almost perfect balance between the global excitatory and

inhibitory currents received by each output neuron (figure 2C).

ð7Þ

Spike-Based Population Coding and Working Memory
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Indeed, the total average current is given by S
dV

dt
T~

CT S
dL

dt
T{S

dG

dt
T

� �
&0, since the network dynamics ensure that

L&G. Different choices of kernel C can change the sign of

excitatory and inhibitory interactions among output neurons, but

total excitation and inhibition is always going to be balanced by

the network dynamics. Spikes are caused by unpredictable

fluctuations of this total balanced input. Even though output

neurons share most of their feed-forward and lateral connections

with their neighbors, the resulting output spike trains are

asynchronous and have low firing rates (see section on network

predictions and discussion).

Finally, we assumed for the sake of simplicity that the same

output neuron can both excite and inhibit different target neurons,

which is clearly not realistic. A more realistic model can be

constructed by using one purely excitatory neuron and another

purely inhibitory neuron for each output kernel.

Roles of the output kernel C and leak l. The free

parameters of our model are the leak l and output kernel C. All

other parameters are functions of l, C, the stimulus dynamics (s
and d) or the input response tuning curves fa(xt) and fv(xt) (or,

more generally, the input kernels Ha and Hv).

The kernel C determines the spatial impact or ‘‘meaning’’ of a

spike. For example, we can adjust the kernel to give more or less

‘‘weight’’ to each output spike. A larger kernel results in lower

activity as less spikes are needed to convey the same information.

Thus, if the output kernels are multiplied by a constant c, the

output firing rates are roughly divided by c. This comes at the cost

of fine precision, since changes in log-posterior smaller than the

output kernel are not represented.

These output kernels do not necessarily need to be known in

advance by the decoder, or any other neural structure extracting

information about xt from the output spike trains. They can

be estimated (or ‘‘learnt’’) directly from the tuning curves,

fo(xt), and covariance matrix,
P

(xt), of the output neurons

[6]:

C’(xt)~
X

{1(xt)f
o(xt)’: ð9Þ

This relationship holds if the spiking likelihood of the output

neurons lies in the exponential family with linear sufficient

statistics [6]. We found that decoders using the ‘‘true’’ kernels or

kernels estimated using equation (9) were almost identical and

performed equally well. Simulation results are reported for the

learnt kernel. Equation (9) also shows that the choice of a specific

output kernel constrains the tuning curves and covariances of the

output neurons.

Similarly, the leak l determines the temporal meaning of a

spike. It sets the timescale over which information contained in a

spike is meaningful. Shorter kernels (i.e. larger leaks) lead to higher

firing rates but also more precise tracking of temporal changes in

the stimulus. As described in the next section, l sets the slope of

firing rate increase during sensory integration. Additionally,

sustained firing rates during working memory are also propor-

tional to l.

Representation of prior beliefs. Let us briefly go back to

our example of the cat and the mouse and say that the cat is

looking around to find a mouse to chase. Even in the absence of

the mouse, the cat’s beliefs on where the mouse is likely to appear

is not uniform. The cat might for instance know that there is a

family of mice living in a specific bush. It will then base its search

mainly on the area around that bush. In other words, the cat has a

strong prior belief on where mice are likely to appear.

The prior belief corresponds to the initial value of the log

posterior, G(0), at the onset of the stimulus, i.e. G(0)~log p(x).
Thus, prior information can be ‘‘stored’’ by applying some

external input and driving the output membrane potentials into a

specific configuration given by V~CT log p(x) before the start of a

trial. The network activity will then maintain this information in

memory in the form of a persistent pattern of activity, as it would

for a sensory stimulus. Once the stimulus is presented, sensory

information will be integrated starting from an initial state

determined by this prior.

Approximating the nonlocal diffusion term. If the stim-

ulus includes a diffusive component, the slow current Ui(O,t)
contains a nonlocal and nonlinear term

P
j C

T
ij Zj(t)

2. We could

imagine that this term is computed by the dendritic trees of the

output neurons. It has been shown that dendrites can implement

nonlinear functions similar to a two layered neural network [32].

Alternatively, we can approximate the nonlocal term by using the

central limit theorem and approximating the posterior by a

Figure 2. Currents. Averaged currents to a neuron with a preferred stimulus of 180 deg as a function of the presented stimulus location. (A)
Currents during the integration period. Feed-forward input currents (blue) are excitatory for stimuli similar to the preferred stimulus of the neuron
and inhibitory otherwise. The sum of fast and slow recurrent currents (red-green dashed line) follows an inverted profile of similar magnitude that
counteracts the effect of the feed-forward input. The leak current (magenta) is small in magnitude compared to the synaptic currents. (B) Currents
during the memory period. Feed-forward inputs are equal to zero. The individual lateral currents are enhanced with respect to the integration period.
However, their total sum (red-green dashed line) is balanced and close to zero (see also the black dashed line in C). (C) Total currents (including leak)
during the integration period (solid line) and during the memory period (dashed line). In both cases, the contributions of individual currents balance
each other out such that the total current is small, slightly excitatory among neurons whose preferred stimuli are similar to the presented stimulus
and inhibitory otherwise. The two maxima of the current during the memory period are due to the non-linear component of the slow recurrent
currents (

P
j C

T
ij Z2

j ) that codes for the stimulus diffusion. It has the effect of broadening the response during the memory period (see figure 3A).

doi:10.1371/journal.pcbi.1001080.g002
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Gaussian distribution. The slow current Ui(t) is then given by

_UUi(t)~{lUi(t)z
X

j

VijOj(t), ð10Þ

where V~CT ((l{l’(t))C{dC’). The time varying leak l’(t)
depends on the variance of the posterior distribution, which could

be computed with a Kalman filter or directly estimated from the

output spike trains. In this paper, we use a simpler approximation

and replace l’(t) by a constant l’, resulting in a fully linear slow

current. An example of this approximation will be shown in

figure 3E of the next section. All other simulation are done using

the full model.

Model predictions
We illustrate the network dynamics and model predictions using

the general task outlined in figure 1A and 1B. Input neurons have

bell-shaped tuning curves and generate Poisson spike trains in

response to an angular stimulus with constant drift and diffusion.

The output neurons follow the leaky integrate-and-fire dynamics

of equation (7). The output kernels C are chosen to be Gaussian

shaped. Details of the simulation parameters can be found in the

Materials and Methods section. All model predictions described

below are largely independent of the specific choices of input and

output kernels.

Network performance. Figure 3A shows the input and

output spike trains on an example trial. A stimulus with constant

drift and diffusion is presented for 500 ms during which the output

population receives feed-forward sensory input from the auditory

and visual layer (top two panels of figure 3A). In the subsequent

memory period, input stimulation ceases completely. The output

population sustains spiking activity even in the absence of sensory

input (bottom panel of 3A). This activity represents a working

memory of the stimulus, i.e. a neural correlate of keeping past

information available in the time window of integration of output

neurons.

The response of the decoder closely matches the performance of

an ideal observer (figure 3B and 3C), illustrating the optimality of

the model network. This is true for both the decoded posterior

G(t) and the distribution of position estimates x̂xt (see methods).

During the sensory integration period, the standard deviation of

the estimator narrows, reflecting an accumulation of evidence

about the stimulus (figure 3D). In the memory period, the

sustained spiking activity keeps representing a probability

distribution about the stimulus. This posterior tracks the drift of

the stimulus, i.e. the predictable component of the stimulus

dynamics (figure 3B). The diffusion however is unpredictable and

therefore increases the uncertainty about the stimulus. As a result,

the standard deviation of the decoded posterior increases over time

(figure 3D). However, if we remove the diffusion term (i.e. s~0),

Figure 3. Network performance. (A) Input and output spike trains on a single trial. A stimulus with constant drift and diffusion is presented for
500 ms (gray area). (B) Time evolution of the stimulus posterior for the ideal observer (blue) and the network read-out (red). Thick lines show the
mean of the posterior and narrow lines the corresponding width. The stimulus trajectory is shown in black. The dashed black line indicates the
predictable (drift) part of the stimulus that the network is tracking during the memory period. (C) Snapshots of the posteriors, from left to right; after
500ms (end of integration period), after 2000 ms and after 5000 ms. (D) Coding performance measured as the standard deviation of the stimulus
estimate x̂xt around its real value xt. The blue and red curves depict the performance of the ideal observer and the network respectively and the green
curve shows the performance of a network without slow currents U. (E) Width of the posterior decoded from the ideal observer (blue), the full
network model (described in equations 7 and 8) (red), a network in which we approximate the nonlocal term in the slow currents U by a linear term
(see equation 10) (green) and a network for which we completely remove the nonlocal term (magenta).
doi:10.1371/journal.pcbi.1001080.g003
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the standard deviation remains constant during the memory

period (not shown). In all cases, the standard deviation of the

network position estimates remains less than 2% above the

standard deviation of an optimal estimator.

Slow currents U(O,t) are essential to compensate for the leak in

the decoder and predict the drift and diffusion of the stimulus.

Without them, sensory integration is suboptimal and information

quickly degrades during the memory period (figure 3D). This is a

direct consequence of the limited time constant of integration of

individual neurons. In fact, neurons lose information at a rate set

by the leak l. The slow currents compensate for this loss by

reintroducing the information that has leaked out and hence

making past information available within the time window of

integration of a neuron. This turns the neurons into optimal

integrators. The nonlinear part of the slow currents can be

efficiently approximated by a linear term (equation 10). For an

optimal choice of l’, the linearized network performs very closely

to the full network (figure 3E).

The network implements Bayesian inference and therefore

combines visual and auditory cues optimally, weighting each

sensory cue according to its accuracy. To illustrate this point, we

plot the performance of the network in a bimodal case in which

both input cues encode the stimulus with equal accuracy and two

‘‘unimodal’’ cases in which one of the inputs represents the

stimulus much more accurately than the other. The accuracy of

the sensory input was changed by multiplying the corresponding

input tuning curves by a constant c~0:25. In all three cases, the

accuracy of the output estimator, measured by its standard

deviation, ŝs, lies within 2% of optimal performance (figure 4A).

Thus, the network automatically adjusts to changes in cue

reliability.

For the same reason, the network takes prior information into

account accurately. Figures 4D and 4E illustrate the spike trains

and the decoded posterior distribution on a single trial with a

Gaussian prior centered at an orientation of xprior~144 deg. The

prior is faithfully represented by the sustained spiking activity

before stimulus onset (figure 4D). In this example, a static stimulus

is presented to the network for 500 ms. As predicted for an

optimal Bayesian observer, the prior biases the position estimates

towards xprior (figure 4B) and narrows the posterior distribution

(figure 4C). Moreover, the influence of the prior depends on the

reliability of the sensory signal, i.e. the bias is stronger if the

stimulus is presented for only 200 ms instead of 500 ms, as shown

in figure 4B.

Output firing rates. The presentation of a stimulus xt results

in a bell-shaped pattern of activity in the output population,

peaking at xt. Thus, output neurons are tuned to the position xt

with bell-shaped tuning curves, similarly to the input neurons.

Figure 4. Cue combination and priors. (A) Estimation accuracy for different reliabilities of the input cues: both input cues are equally reliable
(bimodal) or one cue is more reliable than the other (cue 1 and cue 2). In each subgroup, bars depict from left to right the encoding accuracy of: cue
1, cue 2, the ideal observer, the network at the end of the integration period and the network after one second in the memory period. (B) Biasing
effect of the prior measured as the difference between the real and the estimated stimulus, xt {x̂xt. The effect is stronger for short integration times
(200 ms, left) than for long integration times (500 ms, right). Black bars show the bias expected for a Bayesian observer, white bars depict the
network bias. (C) Standard deviation of the estimator with a Gaussian prior (solid lines) and with a flat prior (dashed lines). A structured prior narrows
the width of the posterior. Blue lines denote the ideal observer, red lines the network performance. (D) Input and output spike trains on a single trial.
A constant stimulus is presented for 500 ms (gray area). The spontaneous activity before stimulus onset encodes the prior belief about the stimulus.
(E) Time evolution of the posterior for the ideal observer (blue) and the network (red). Thick lines show the mean of the posterior and narrow lines the
corresponding width. The stimulus is shown in black.
doi:10.1371/journal.pcbi.1001080.g004
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However, the shape and amplitude of their tuning curves vary

during the entire duration of the trial (figure 5B).

The integration of sensory evidence and its maintenance in

working memory is reflected by the instantaneous firing rates of

the output neurons. Figure 5A depicts the post-stimulus time

histogram (PSTH) of the output neurons in response to a stimulus

with constant diffusion. The corresponding tuning curves are

illustrated in figure 5B. During the integration period, the firing

rates initially jump to a higher level of activity and subsequently

ramp up. The gain of the tuning curves increases linearly with

time, reflecting an accumulation of sensory evidence. Both the size

of the initial response and the slope of the ramping increase in

firing rate depends on the accuracy and quality of the sensory

inputs. Thus, if we increase the Fisher information available in the

input population codes (see methods), firing rates grow faster,

reflecting a faster accumulation of evidence (figure 5C). This is

reminiscent of neural responses in the parietal cortex during

motion integration tasks [27]. The slope of the ramp is also

proportional to the leak term l. Thus, integrate-and-fire neurons

with no leak (or with time constants significantly longer than the

effective time constant of the dynamic stimulus) would have

constant firing rates during sensory integration. This is predictable

since l~0 implies that the decoder is able to integrate output spike

trains over the entire duration of the trial. It is therefore not

necessary to represent accumulated sensory evidence on-line. In all

cases, neural activities eventually saturate at a constant level, since

the diffusive noise limits the precision with which the stimulus can

be encoded (not shown here).

Figure 5. Output firing rates. (A) Post-stimulus time histogram (PSTH) of the output activity in response to a stimulus with constant diffusion.
Color indicates firing rates in Hz. The stimulus (magenta line) is presented during the first 500 ms. (B) Tuning curves of a sample neuron. Spikes are
counted in 10ms bins centered at 50 ms (black), 200 ms (blue) and 500 ms (red) during the integration period and at 550 ms (green) and 2500 ms
(magenta) during the memory period. (C) Traces of the average firing rate of a neuron whose preferred stimulus lies around the peak of the bump of
activity. Different curves depict different levels of Fisher information in the input population codes: reference information, I0 for the regular
parameters (red), 1:4I0 (green) and 0:7I0 (blue). (D) Traces of the average firing rate of three neurons whose preferred stimuli lie at the peak of the
bump of activity (blue), the side of the bump (red) or far away from the bump (green). (E) PSTH of the output activity in response to a static stimulus
presented for 500 ms. (F,G) Interspike interval (ISI) histogram during the integration period (F) and during the memory period (G) for a sample
neuron. The red line shows the ISI histogram of a Poisson process with the same rate.
doi:10.1371/journal.pcbi.1001080.g005
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Firing rates during the memory period have a lower baseline

activity but similar tuning as during the integration period. Over

time, tuning curves and population activity decrease, broaden and

eventually disappear (figure 5A and 5B). As a result, the

instantaneous firing rates during the memory period are not

constant but vary dynamically, ramping either up or down.

Figure 5D shows the average firing rates of three neurons whose

preferred stimuli are located around the peak of the persistent

bump of activity (blue), the side of the bump (red) and far from the

bump (green). Similar neural behavior has been observed in

parietal and prefrontal brain areas during working memory tasks

[27,33,28]. Our model suggests that such ramping behavior might

reflect the widening of the posterior over time due to an

accumulation of uncertainty about the represented variable. Thus,

ramp-like changes in firing rates during working memory tasks

could be a signature of a gradual decrease in confidence for this

memory.

However, the behavior of the network is different in the absence

of diffusion. The network is then able to maintain information

about the stimulus over very long timescales, reflected by a

neutrally stable bump of activity (figure 5E). The firing rates

during the memory period are thus constant over time for a static

stimulus. However, the amplitude of the sustained bump of activity

depends on the amount of accumulated sensory evidence

(figure 5C) as well as on the neural integration time constant.

Indeed, the sustained firing rates necessary to maintain a constant

log posterior, g(xt,t), are proportional to g(xt,t) multiplied by the

leak l (see equation 3). Thus, persistent activity is larger for more

informative sensory inputs or stronger leaks. Notice that neurons

and decoders without a leak would not exhibit any sustained

activity.

This implies that our working memory model differs from

previous models that are based on line attractor dynamics [31,30].

For these bump attractors, neural dynamics settle onto stereotyped

activity profiles whose peak positions encode the most likely

stimulus values. The probabilistic information associated with

these values, however, is lost. In contrast, our network acts as an

optimal integrator that maintains the sensory information it has

received in the past. Consequently, various patterns of activity that

differ in shape and amplitude can be sustained.

In particular, our network can maintain multi-modal posterior

distributions reflected in multi-modal patterns of activity. Figure 6

depicts a case in which two different stimuli are consecutively

presented to the network with a delay interval of one second. Both

stimuli are presented for equal time periods of 350 ms. Their

representation depends on the relative distance between them. If

the stimuli are presented far away from each other, the network

sustains two spatially distinct bumps of activity (figure 6A). Both

stimuli are also clearly represented in a bimodal log posterior

distribution. However, if the two stimuli lay close together,

individual bumps fuse into a single bump (figure 6B). As a

consequence, the log posterior becomes unimodal, peaking in

between the two stimuli. Thus, the accuracy at which information

about individual stimuli can be resolved is limited by their spatial

discrepancy.

Output spike train statistics. The resulting output spike

trains are asynchronous and spike times are not reproducible from

trial to trial. They exhibit properties very similar to Poisson

processes. Thus, the interspike interval (ISI) distributions of the

output spike trains are quasi-exponential in both integration and

memory period (figure 5F and 5G). We find coefficients of

variation (CV) of 0.97 in the integration and 1.06 in the memory

period. Fano factors are about 1.4 in both periods. We also

observe only small cross correlations between different neurons.

Correlation coefficients never exceeded 0.001.

The sensory stage in our model is noisy, reflected by the Poisson

firing of the input neurons. In contrast, output neurons generate

spikes deterministically. Despite this fact, their spike trains

resemble independent Poisson processes. This is true even during

the memory period when the network activity is self-sustained and

no noise is introduced by the external inputs. This eliminates the

possibility that the output statistics are directly inherited from the

Figure 6. Response to multiple stimuli. Two static stimuli (red lines) are consecutively presented to the network for 350 ms each. They are
separated by a delay time interval of one second. Their spatial distance is (A) 180 deg, and (B) 45 deg. Top row: Spike trains on a single trial. Bottom
row: Time evolution of the unnormalized log posterior (gray scale representation). The simulated network contains 200 instead of 50 neurons for
better visual clarity.
doi:10.1371/journal.pcbi.1001080.g006
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Poisson distributed, feed-forward inputs and raises the question of

where this variability comes from. In particular, can the responses

of the network be considered to obey the predictions of a rate

model?

We hence investigate the origin and role of this variability by

using two approaches: A perturbation approach to study the

dependency of output spike trains on initial conditions; and a

decoding approach where we study how well the spike train of an

output neuron can be predicted from the activity of the other

neurons in the population.

Perturbation approach. We consider the smallest possible pertur-

bation; one additional output spike. The injection of only one

extra spike disrupts the spike pattern and reshuffles the times of all

subsequent spikes in the population (figure 7A). This effect is

observed regardless of whether the extra spike is injected during

the memory period or during the integration period. The average

firing rates of the output neurons sharply increase directly after the

perturbation, indicating that each extra spike produces many other

extra spikes in its postsynaptic targets (figure 7C). This rise in firing

rate quickly decays, such that the perturbed and unperturbed

firing rates become indistinguishable within 10 ms after the

injection of the extra spike. Such short-lived increase in population

firing rate due to an added spike has recently been reported in vivo

based on stimulation and recordings in rat barrel cortex [34].

Figure 7D shows the time course of the normalized cross-

correlation between the perturbed and unperturbed spike trains.

The addition of an extra spike induces a fast drop of this

correlation. This is characteristic of a chaotic network [35,36] in

which two initially identical trajectories quickly diverge after a

small perturbation.

The encoding properties of the output neurons are thereby not

affected. The decoded posterior still matches the ideal observer

closely (figure 7B). This shows that there is a multitude of spike

patterns that can optimally encode the same information. Which

pattern is chosen by the network strongly depends on initial

conditions and small perturbations (see the schematic illustration

in figure 7F).

We observed the same characteristics if a single output spike

fails to be fired. Spike patterns are again completely reshuffled

while coding performance is unaffected. Moreover, our model is

robust to even frequent spike generation failure. The reason lies in

the error correcting property of the code. If a spike generation fails

it is compensated by a spike from another neuron that adds a

similar kernel to the posterior, as illustrated in figure 7F.

Decoding approach. We apply a decoding analysis during the

memory period, in which the network relies only on its

deterministic internal dynamics, and we consider a static stimulus

without drift or diffusion.

Let us first assume that we record from the entire population of

output neurons. We want to know how well the spike times of a

single neuron m can be predicted by the responses of the N{1
other output neurons. Notice that if the spike trains were

independent Poisson processes and hence completely uncorrelat-

ed, the spike times of neuron m could not be predicted at all. In

contrast, in our network, the membrane potential of neuron m
depends on the spikes from the N{1 other neurons.

We can predict the spike times of neuron m by estimating when

its membrane potential (equation 7) will cross the firing threshold.

This prediction will not be perfect since the initial state of the

network V(0) is unknown. However, we can still predict spike

times with millisecond accuracy with such a method.

Let us now suppose that we record (more realistically) from a

subpopulation of M output neurons. The responses of the N{M
other neurons in the full population is unknown. We want to know

how well the spike times of recorded neuron m can still be

predicted by the responses of the M{1 other recorded neurons.

Our strategy is to treat the M recorded neurons as if they

represented the whole output population, using their spike trains

to predict the membrane potential of neuron m, V̂Vm(t) (see

methods). In this case, the spike times cannot be predicted with

millisecond accuracy anymore. However, V̂Vm(t) is still correlated

with the true membrane potential, and it increases shortly before

an actual spike in neuron m (figure 7E, inset). We measured

‘‘predictability’’ by how significant this increase in predicted

membrane potential is at the time of a spike (see methods). The

predictability of an uncorrelated Poisson spike train would be zero.

As shown in figure 7E, the predictability is high when most of

the population is taken into account. However, predictability

decreases with the portion of output neurons that are recorded

simultaneously. It becomes indistinguishable from a rate code with

Poisson distributed, uncorrelated spike trains if less than 25% of

the neurons in the population are recorded. In cases where it is

possible to record from a large subpopulation, this analysis

provides a specific, experimentally testable prediction.

Robustness. We have previously seen that our network is

robust to small perturbations and spike generation failure. We are

now going to show that it is also robust to synaptic noise. Synaptic

background noise is a prominent source of neural noise [37].

Cortical neurons receive barrages of inputs that are largely

uncorrelated with feed-forward stimuli [38] and this noisy input is

sufficient to affect the spiking properties of these neurons [39]. We

model synaptic background noise as an additive white Gaussian

noise term on the membrane potential of the output neurons. This

noise current has a mean strength of zero and a standard deviation

of snoise. It increases the standard deviation of the total input that

output neurons receive (including feed-forward and recurrent

inputs) while letting the mean input unaffected. This results in a

decrease of the signal-to-noise ratio of the total input, SNR =

mean(input)/std(input), measured as the ratio of mean input to the

standard deviation of the input. Thus, synaptic noise introduces

additional uncertainty about the stimulus.

Figure 8A shows the effect of different strengths of synaptic

noise on the network. With increasing noise strength, the standard

deviation of the stimulus estimator lies increasingly above its

optimal value. However, even at a noise level that reduces the

signal-to-noise ratio by 100%, the network performance at the end

of the 500 ms integration period is only 15% worse than

optimality. A SNR reduction of 20% only slightly affects the

network performance. In the memory period, network perfor-

mance decreases further although more slowly. This indicates that

the network is most sensitive to noise at an early stage of the

integration period. Once the stimulus posterior has sharpened, the

network is more robust to noise perturbations. Altogether, our

model is robust to even high levels of synaptic background noise.

This robustness to even large levels of synaptic noise is another

consequence of the error-correcting property of the code. Synaptic

noise will lead neurons to reach their firing threshold even if their

kernel does not decrease the mean squared distance between L
and G (see figure 1C). However, other output neurons will detect

this temporary increase in prediction error in their membrane

potential and fire spikes to compensate for it.

For a similar reason, our network is robust to changes in the

connection strengths between neurons. Scaling all recurrent

synapses by +20% from their optimal values leaves the network

performance largely unaffected (figure not shown). This contrasts

with networks based on line attractor dynamics (e.g. [40]), which

require connections to be tuned with better than 1% accuracy (see

however [41]).
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Comparison to a rate model. Despite its deterministic

nature, our model exhibits firing statistics comparable to a rate

model with independent Poisson noise for which spike times do not

carry information. Thus, the question arises whether we could

implement the same computations equally efficiently with stocha-

stically generated spikes? In particular, if we consider biological

networks with thousands of neurons, averaging responses from large

populations of neurons might render the contribution of each spike

unimportant. In this case, spike-based and rate-based approaches

might become equivalent. In the following, we show that this is not

the case. A deterministic spike generation rule is crucial for efficient

information transfer even in very large networks.

Figure 7. Spike train variability. (A) Output spike trains for two runs (blue and red) of activity starting with the same initial conditions. The red run
is perturbed by the injection of one extra spike (shown by the red arrow). (B) Time course of the posterior of the two runs. (C) PSTH of the control
(blue) and the perturbed (red) runs. The extra spike is injected at t~tperturb. Spikes are counted in 2 ms time bins and averaged over all neurons and
over 10000 trials. (D) Time course of the normalized cross-correlation between the two runs of activity. The vertical dotted line indicates the time at
which the perturbation (one extra spike) was added. (E) Predictability (equation 33) of the activity of an output neuron if we record from a fraction
M=N neurons of the output population. The predictability for neuron m is plotted for spikes that are generated from the deterministic network
(blue) or from a Poisson process (red). The rightmost predictability (at a fraction of 1) corresponds to the predictability of the measured, i.e. not
predicted, membrane potential. The inset shows the increase in predictability previous to a spike (for a fraction of recorded neurons of 0.8). (F)
Schematic illustration of the error correcting properties of the network. The left panel shows a reference spike train. Each spike adds a kernel that
when added together give the log posterior G (top). If an extra spike is added (middle panel, red spike), the spike train is reshuffled in a way that
keeps the total log posterior constant. If the initial spike fails to be elicited (right panel, blue dotted spike), a neighboring neuron recognizes the
‘‘hole’’ of information transmission and fires a spike to fill it. This changes the initial condition (first firing neuron in black) and therefore shuffles the
spike train. The total log posterior remains the same.
doi:10.1371/journal.pcbi.1001080.g007
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To show this, we started by implementing a version of the

probabilistic population code of Ma et al. [6]. These authors have

shown that optimal integration of information from two

population codes reduces to a linear combination of their neural

activities. In the context of temporal sensory integration, the

predicted output firing rates, r(t), correspond to the cumulative

spike counts [7]. Thus, the output firing rates are given by

r(t)~K

ð
(Sa(t’)zSv(t’))dt’, ð11Þ

where K represents the gain of the output neurons. As in our model,

the output rates r(t) represent the stimulus posterior distribution

optimally and on-line. In particular, activities increase linearly over

time to account for the accumulation of sensory evidence. In order

to avoid saturations of neural activities, Beck et al. [7] proposed a

form of on-line normalization, effectively using a time varying gain

K . This does not change the main conclusion of this section. For the

sake of simplicity, we consider K to be constant.

We now examine the consequence of firing spikes stochastically

with rate r(t) rather than representing this accumulated evidence

deterministically. We measured the performance of the stochastic

network with the on-line decoder described in equation (3) and

using the optimal output kernels C(xt)~log(fa(xt)zfv(xt)).

Figure 8B depicts the performance of the stochastic network for

different values of K . The stochastic network behaves qualitatively

like an ideal observer, i.e. it accumulates evidence and its error

decreases over time. Moreover, for large gains K and long

integration times, the performance of the stochastic network

approaches the performance of an ideal observer of the sensory

input (i.e. about 10% above optimality for K~20). However, for

shorter sensory integration periods (v500 ms), the performance is

poor even for large gains. Moreover, the output gain K has to be

much larger than one. This implies that the stochastic network

requires many more output spikes than input spikes (about 15

times more in this example) in order to avoid destructive

information losses between the input layers and the output layer.

By contrast, our network fires half as many output spikes than

input spikes. We found that we could even lower that amount to 5

times less spikes in the output layer than in the input layers by

increasing the size of the output kernels without any significant

degradation in network performance.

Figure 8. Robustness to noise. (A) Coding performance of the network in the presence of synaptic background noise. The vertical axis plots the
percentage excess of the standard deviation of the stimulus estimator above its optimal value. Results are reported for percentual decreases in the
signal-to-noise ratio, SNR = mean(input)/std(input), of 0% (black), 20% (blue), 50% (red) and 100% (green). A static stimulus is presented during the
first 500 ms (grey area). (B) Coding performance of a stochastic network for different output gains: K~1 (green), K~5 (magenta) and K~20 (cyan).
The ideal observer is plotted in blue and the performance of the deterministic network in red. A static stimulus is presented during the entire
1500 ms. (C) Schematic illustration of the difference between deterministic and stochastic spike generation. The left and middle panel show two
spike trains encoding the same information but starting from different initial conditions. However, neurons in the output population are recurrently
connected and ‘‘know’’ therefore perfectly well, when to fire a spike such that the log posterior G is represented. If the lateral connections are
removed, neurons fire stochastic spike trains that look similar to the deterministic ones but do not encode the same log posterior.
doi:10.1371/journal.pcbi.1001080.g008
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A neural system clearly cannot afford to spend 15 times more

resources at each processing stage. Moreover, this cost of

stochastic spike generation does not decrease with the size of the

input and output neural populations. In the limit of large numbers

of neurons/spikes, the variance of the stochastic network estimate

approaches s2
CR 1z

1

K

� �
, where the Cramer-Rao bound s2

CR is

the variance of an optimal estimator (see methods). Efficient

information transfer can only be achieved at the cost of large

values of K , i.e. many more output spikes than input spikes.

Discussion

In this article, we have revisited population coding with spiking

neurons in the context of dynamic stimuli. Starting from first

principles, we have demonstrated that networks of laterally

coupled integrate-and-fire neurons can integrate and combine

sensory information about a dynamic stimulus in close approxi-

mation to an ideal observer. In the absence of sensory input, these

networks either represent the stimulus prior probability in their

spontaneous activity before stimulus onset or they represent a

working memory of the inferred stimulus posterior in their

sustained activity after integration. These memories thereby keep

tracking the underlying stimulus dynamics.

An important innovation of our model is that it encodes

working memories representing an entire stimulus distribution

rather than only a single stimulus value. It thereby distinguishes

itself from other working memory models in the literature. Most

working memory models are bi-stable attractor models [31,30] in

which the sustained activity settles to a stable pattern indepen-

dently of integration time or stimulus contrast. It is clear that such

a stereotyped activity profile can only code for the most likely

stimulus. Information about the uncertainty associated with the

stimulus is lost. In contrast, our model is not based on bi-stability

or line attractor dynamics but on an integration of past sensory

evidence. In the presence of diffusion (sw0), the only stable state is

the quiescent state, which corresponds to a flat probability

distribution. In the absence of diffusion, the network maintains

any pattern of activity that is evoked by past sensory stimulation.

However, sensory stimuli in the real world are never ‘‘truly’’

stable. Moreover, any form of stochasticity in neural processing

will result in a slow but constant accumulation of errors (see for

instance the progressive decrease in performance due to synaptic

background noise in figure 8A). Both of these properties will lead

to working memories that are not completely stable, but eventually

relax towards a quiescent state, i.e. a flat posterior distribution. In

agreement with this prediction, the precision of a working memory

for static stimuli degrades with the duration of the delay [42].

We propose that cortical neurons are primarily predictive

encoders rather than stochastic spike generators. Integrate-and-fire

dynamics as well as a competition between neurons only allows the

generation of spikes that contain new information about the

stimulus, i.e. information that has not yet been signaled by the

neural population. Each spike therefore carries a precise meaning.

As a consequence of the above mentioned properties, small

networks of only tens of neurons can encode stable memories.

Persistent, asynchronous memory states are notoriously difficult to

achieve with small networks of integrate-and-fire neurons. Our

model on the other hand is largely free from laborious fine tuning.

It provides a functional interpretation of parameters such as lateral

connections and synaptic dynamics, and could be used as a

guideline to find optimal parameters in biophysically plausible

networks. For instance, the slow currents U(t) in our framework

might be mediated by a combination of slow excitatory NMDA

synapses and slow inhibitory GABAB synapses. NMDA synapses

have been identified by previous studies as a potential requirement

for robust working memory responses [30,43,40].

In our framework, prior beliefs correspond to setting the

network into an initial state G(0)~log p(x). As an example, we

proposed an implementation of a sustained pattern of baseline

activity, equivalent to a working memory for an input provided

before the start of the trial. Similar mechanisms for implementing

priors using external inputs have been suggested in other

theoretical studies [6]. This would predict that baseline firing

rates are modulated by prior assumptions of a subject, for example

by stimuli experienced in the recent past. However, ‘‘long-term’’

prior beliefs could also be implemented by the choice of output

kernels. Thus, the density of preferred stimuli in the neural

population could be chosen non-uniformly and such thatX
i
Cij

log p(x~xi)
~constant [44]. In this case, the prior would be

represented by all neurons firing at a constant, low baseline firing

rate. This predicts no structure in the baseline response prior to

stimulus presentation, and no direct influence of the prior on the

tuning curves of individual neurons. In support of such a mechanism,

perceptual learning causes an increase in neural representation for

more frequently experienced stimuli [45,46,47].

Another important aspect of our approach concerns its interpre-

tation of neural variability. Traditional population coding approaches

clearly separate ‘‘signal’’, encoded in rate modulation, and ‘‘noise’’,

encoded in the spike count variance. Rate models, such as linear-

nonlinear Poisson (LNP) neurons [48], rely on stochastic spike

generation for generating realistic spike trains. Individual spike times

do not carry any meaning while spike train variability is interpreted as

noise. A problem arises when such rate units are used to perform

sensory integration. In this case, while output units can compensate for

the neural noise by integrating information over cues and time, they

‘‘throw away’’ part of this information by firing spikes stochastically.

Thus, Lochmann et al. [49] have shown previously that stochastic

firing strongly degrades the information transfer capacity of single

neurons that represent a time varying binary stimulus. Here we show

that this is also the case for continuous stimuli, except if the neural

system is willing to largely increase the amount of resources (i.e. spikes,

neurotransmitters) it devotes to each sensory variable.

Our approach provides an alternative account for the origin of

neural variability observed in cortical networks. Stochastic firing is

not a good description of noise in single neurons [50,51]. Instead,

it has been proposed that this variability originates in chaotic

dynamics of recurrent networks of integrate-and-fire neurons with

balanced excitation and inhibition [35,36,52]. This perfectly

agrees with our findings since our network shows characteristics

of a chaotic system in the absence of sensory input. However, we

show that these dynamics cannot be equated to noise. They only

reflect the fact that multiple deterministic trajectories (i.e. spike

patterns) encode the same information (figure 7). Albeit chaotic,

this network can conserve and transmit information perfectly. At

the same time, the network is self-correcting and robust to types of

noise that have been reported in cortical neurons, such as spike

generation noise or synaptic noise [37,38].

It might appear paradoxical to assume input neurons corrupted

by Poisson noise while using perfectly deterministic output neurons.

However, input noise in our model is meant to represent

unavoidable sources of sensory noise, such as the stochasticity of

our sensors in the first signal transduction stages (e.g. thermody-

namical/quantum mechanical noise in the photoreceptors). This

initial noise sets a bound on how much information is available for

further processing stages. We used population codes with indepen-

dent Poisson noise as inputs for the sake of convenience and because

Spike-Based Population Coding and Working Memory

PLoS Computational Biology | www.ploscompbiol.org 13 February 2011 | Volume 7 | Issue 2 | e1001080



such variability is expected as a consequence of predictive coding.

However, the same networks can process any noisy inputs whose log-

likelihoods can be computed on-line. Our preliminary findings

suggest indeed that our model can construct population codes with

Poisson-like firing statistics for almost any type of noisy sensory input,

including input that is not Poisson, not spiking or not a population

code. Consequently, Poisson distributed input in our model does not

represent noise in the input neurons but the outcome of previous

optimal neural processing of the sensory input.

Our hypothesis can be tested experimentally in cases where one

is able to record simultaneously from a significant portion of the

population. Since our model assumes a strong level of inter-

connectivity and shared input, a population could correspond to a

local, relatively small network such as a micro-column, rather than

a large and diffuse network containing millions of neurons. Our

model predicts that the larger the simultaneously recorded

population, the better one can predict individual spike times,

using methods described in section ‘‘Output spike train statistics’’.

On the behavioral level, our model predicts that humans should be

able to memorize entire probability distributions. This could be

tested by a simple cue combination experiment, in which two cues

about a stimulus (e.g. a visual and an auditory cue about the

location of an object) are presented with a temporal delay. If

subjects keep track of the uncertainty associated with the first cue,

they should still behave like optimal Bayesian observers when

combining information from the two cues after the delay period.

We are not the first authors to propose a spiking network for optimal

cue combination and sensory integration. Ma et al. [6] implemented

probabilistic population codes for cue combination, and more recently

for temporal integration of evidence in a motion integration tasks [7]

with either conductance-based integrate-and-fire neurons or stochastic

LNP neurons. However, their theoretical approach is based on firing

rates, and the simulated spiking networks are used to show that the

sums of spike counts predicted by an ideal observer can also be

implemented by spiking neurons. The authors show that the output

layer behaves as an ideal observer when comparing uni-modal with

bimodal cue combination or when observing how quickly information

accumulates over time. However, they concentrate solely on the

information contained in the output layer for the different conditions:

unimodal versus bimodal or high versus low levels of sensory noise.

They do not measure the performance of the spiking network in terms

of how much information is conserved or lost in the transfer from input

to output spike trains. Our results suggest that while their approach is

indeed optimal if outputs are analog firing rates, it becomes suboptimal

when translated into noisy spike trains (except if there are many more

output spikes than input spikes). In contrast, our model can be used to

implement a probabilistic population coding framework directly with

spikes rather than with rates.

Other authors have considered log probability codes [9,53,8].

For example, Rao [53] proposed a network of integrate-and-fire

neurons performing approximate Bayesian inference. Similar to

our model, the membrane potentials were interpreted as log

posteriors. However, this model encoded posterior probabilities in

terms of instantaneous firing rates rather than considering spikes as

deterministic prediction errors.

Our approach is similar to the ‘‘spiking Boltzmann machine’’

proposed by Hinton and Brown [21]. This model, however,

performed approximate and not exact inference, and did not

provide an explicit, local spike generation rule. Another related

approach, termed fast population coding (FPC) [23,18], was

applied to more general stimulus dynamics described by Gaussian

processes. This model is particularly relevant for very sparse input

(few input spikes) and functions by adding more output spikes,

hence rendering linear decoding easier. However its spike

generation rule (using KL divergence) is non-local, requiring

supervised learning of the lateral connections in order to

approximate it. In contrast, our model works with a local spike

generation rule, essentially compressing the code, but is optimal

only for Markovian dynamics.

We assumed that output neurons ‘‘know’’ the parameters of the

input noise and stimulus dynamics. Sensory noise, stimulus drift

and diffusion are hard-wired in the weights of feed-forward and

lateral connections. For the sake of simplicity, we considered

simple stimulus dynamics with a constant drift d and diffusion s.

However, our approach can be extended in a straightforward way

to state dependent drifts d(x) and diffusions s(x). We have seen

that the input and output kernels can be learnt from the input and

output tuning curves and covariance matrices. Thus, ‘‘slow’’

lateral connections predicting drifts and diffusions could be learnt

using Hebbian-learning rules. However, a given network is

designed for a specific set of stimulus parameters. Ideally, we

would want output neurons to estimate these parameters online

during the presentation of a stimulus, for example if the stimulus

speed changes suddenly. This could be implemented by multi-

dimensional networks representing dynamical parameters [54].

Thus, the state variable xt could contain additional dimensions for

velocity, acceleration, force, etc. The capacity of such networks to

track their stimulus would only be limited by combinatorial

explosions as more stimulus dimensions need to be represented.

Materials and Methods

Ideal observer
Here we derive an expression for the ideal observer of the

log posterior l(xt,t):log p(xtjfSn
½0,t�gn)zconst, where Sn

½0,t�:
(Sn

0,Sn
dt, . . . ,Sn

t ) denotes the spike trains of the input neurons in

population n in response to dynamic stimulus xt. The ideal observer

integrates the inputs from n populations that represent n different cues

about xt.

The total response Sn
½0,t� can be divided into the response at

the current time step Sn
t and the response history Sn

½0,t{dt�. The

population response at time t is a binary vector Sn
t ~

(Sn
t,1,Sn

t,2, . . . ,Sn
t,N ) where Sn

t,i~1 if an input neuron i fired a

spike at time t and Sn
t,i~0 otherwise.

We can use Bayes’ rule to write the conditional probability of

the stimulus given the past history of activity patterns,

p(xtjfSn
½0,t�gn)~

1

Zt

P
n

p(Sn
t jxt)

ð
p(xtjxt{dt)p(xt{dtjfSn

½0,t{dt�gn)dxt{dt:
ð12Þ

This equation expresses the current posterior stimulus probability

as a spatially averaged version of the past stimulus probability,

weighted by the current response probabilities and properly

normalized by Zt. We have assumed that the response likelihoods

are independent among input populations and only depend on the

current stimulus location. We can turn the multiplications in

equation (12) into sums by passing to the log domain,

log p(xtjfSn
½0,t�gn)~

X
n

log p(Sn
t jxt)zlog

ð
p(xtjxt{dt)p(xt{dtjfSn

½0,t{dt�gn)dxt{dt

{log(Zt):

ð13Þ
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The normalization term, {log(Zt), corresponds to an additive

constant that does not change the shape and therefore the

information content of the log posterior. We will therefore neglect

this term in what follows.

The response likelihood p(Sn
t jxt) is assumed to belong to the

exponential family with linear sufficient statistics, i.e. the firing

probability of a neuron in a small time window ½t{dt,t� can be

written as p(Sn
t jxt)~Wn(Sn

t )Yn(xt)exp
P

j Hn
j (xt)S

n
t,j

	 

, where

Wn(Sn
t ) and Yn(xt) are arbitrary functions and Hn(xt) is a kernel

that is related to the neurons’ tuning curves fn(xt) and their spike

count covariance matrix
P

(xt) through the relation [6]

Hn(xt)’~
X

{1(xt)f
n(xt)’, ð14Þ

where
0

denotes the derivative with respect to x. We can then write

the likelihood in its log form

log p(Sn
t jxt)~

X
j

Hn
j (xt)S

n
t,jzlogYn(xt)zlogWn(Sn

t ): ð15Þ

Equation (15) takes a particularly easy form if we consider

independent Poisson processes. In this case we find that the kernel

Hn(xt) is linked to the logarithm of the tuning curves fn(xt) by

Hn
j (xt)~log f n

j (xt) and a bias term is given by the sum of tuning

curves logYn(xt)~
P

j f n
j (xt). The term logWn(Sn

t ) acts as a

normalization term and is neglected.

Let us now move to the term
Ð

p(xtjxt{dt)p(xt{dtjfSn
½0,t{dt�gn)

dxt{dt. The factor p(xtjxt{dt) represents the probability that the

stimulus moves from xt{dt to xt in the small time interval dt. This

probability is independent of the starting position, such that

p(xtjxt{dt)~p(xt{xt{dt). This turns the term of interest into a

convolution that we can expand and express as

ð
p(xtjxt{dt)p(xt{dtjfSn

½0,t{dt�gn)dxt{dt&

&
ð

p(Dx,dt) 1{DxLxz
1

2
Dx2Lxx

� �
p(xt{dtjfSn

½0,t{dt�gn)dDx,

ð16Þ

where p(Dx,dt) denotes the probability that the stimulus moves by

Dx in time interval dt. Since p(Dx,dt) is a probability densityÐ
p(Dx,dt)dDx~1. If we assume the stimulus to follow the drift-

diffusion dynamics from equation (1), dxt~ddtzsdWt, where Wt

is a Wiener process, we can express the remaining sums in

equation (16) as

ð
p(Dx,dt)DxdDx~ddt and

ð
p(Dx,dt)Dx2dDx~

s2dt. Using these identities together with equation (16) and taking

the log we find

log

ð
p(xtjxt{dt)p(xt{dtjfSn

½0,t{dt�gn)dxt{dt

� �
~log p(xt{dtjfSn

½0,t{dt�gn){

{ddt
Lxp(xt{dtjfSn

½0,t{dt�gn)

p(xt{dtjfSn
½0,t{dt�gn)

z
s2dt

2

Lxxp(xt{dtjfSn
½0,t{dt�gn)

p(xt{dtjfSn
½0,t{dt�gn)

,

ð17Þ

where we have Taylor expanded the log to first order. It can easily

be verified that

Lxp(xt{dtjfSn
½0,t{dt�gn)

p(xt{dtjfSn
½0,t{dt�gn)

~Lx log p(xt{dtjfSn
½0,t{dt�gn)

Lxxp(xt{dtjfSn
½0,t{dt�gn)

p(xt{dtjfSn
½0,t{dt�gn)

~Lxx log p(xt{dtjfSn
½0,t{dt�gn)

z Lx log p(xt{dtjfSn
½0,t{dt�gn)

	 
2

:

ð18Þ

We can use these identities and combine equations (13), (15)

and (17) to find the temporal evolution of l(xt,t) in the continuous

limit dt?0:

_ll(xt,t)~
X

n

X
j

Hn
j (xt)S

n
j (t)zlogYn(xt)

( )

{dLxl(xt,t)z
s2

2
Lxxl(xt,t)z Lxl(xt,t)ð Þ2
	 


,

ð19Þ

where Sn
j (t)~

P
k d(t{tn,k

j ) denotes input spike trains with tn,k
j

the kth spike of neuron j in population n.

Neural approximation to the ideal observer
Here we derive an approximation to the ideal observer that is

implemented by the leaky integrate-and-fire neurons in the output

population described in equations (7) and (8) of the main text.

We first introduce a discretization of the stimulus space given by

x~(x1,x2, . . . ,xN ), where xi corresponds to the preferred stimulus

of neuron i. Each neuron therefore codes for the value of the log

posterior distribution at its preferred stimulus, which we denote

Li(t):l(xt,t)jxt~xi
. We want the output spike trains to encode a

distribution G(t) that closely approximates L(t), i.e. Gi(t)&Li(t)
for all i. Additionally, following equation (3) the dynamics of G(t)
are given as

_GGi(t)~{lGi(t)z
X

j

CijOj(t): ð20Þ

l denotes a positive leak term and C is a freely chosen weighting

kernel.

When inferring the input log posterior, L, in a neural system,

one cannot simply use equation (19) because individual neurons do

not have direct access to the spatial derivatives of L. However, if

we choose a spike generation mechanism which ensures that

G(t)&L(t) at all times, we can use the recurrent spikes to

approximate the spatial derivatives of L and rewrite equation (19)

in a discretized form as

_LLi(t)~{lLi(t)zlGi(t){dLxGi(t)z

s2

2
LxxGi(t)z LxGi(t)ð Þ2
	 


zIi(t),
ð21Þ

where Ii(t) denotes the input to neuron i at time t. Notice that we

have introduced a linear leak l in L and compensated for it by

adding a corresponding fraction of G.

We now define Yi(t):lGi(t){dLxGi(t)z
s2

2
LxxGi(t). To find

the time evolution of Yi(t) we need to calculate the time derivative

of the spatial derivatives of G. Using equation (20) we get

ð17Þ
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L
Lt

LxGi(t)ð Þ~{lLxGi(t)z
X

j

½LxC�ijOj(t): ð22Þ

A similar equation is found for the second spatial derivative of

G. Combining these equations with the definition of Yi(t) and

denoting the spatial derivative with respect to x by
0

we get

_YY i(t)~{lYi(t)z
X

j

lCij{dC
0
ijz

s2

2
C’’ij

� �
Oj(t): ð23Þ

Similarly we define Zi(t):
sffiffiffi
2
p LxGi(t) so that

_ZZi(t)~{lZi(t)z
X

j

sffiffiffi
2
p C’ij

� �
Oj(t): ð24Þ

Finally, we can write our approximation to the ideal observer as

_LLi(t)~{lLi(t)zYi(t)zZi(t)
2zIi(t): ð25Þ

For this approximation to work, it is crucial that G(t)&L(t). To

ensure this condition to hold, we look at the squared distance

between G and L and only let those neurons fire a spike, which

add a kernel to G that moves it closer to L. Mathematically this

means that a spike is fired if

X
j

Lj(t){Gj(t)
� �2

w

X
j

Lj(t){(Gj(t)zCji)
� �2

: ð26Þ

We can develop the squares in equation (26) to rewrite the

spiking criterion as

X
j

Cji(Lj(t){Gj(t))w
X

j

C2
ji=2: ð27Þ

We define the left hand side of this equation as the membrane

potential Vi(t) of neuron i. The temporal evolution of Vi(t) below

threshold can be obtained by combining equations (25), (23), (24)

and (20) with the left hand side of equation (27). It is then straight

forward to find the final result

_VVi(t)~{lVi(t)z
X

n

X
j

½CT Hn�ijSn
j (t){CT

ij logYn
i

n o
{

X
j=i

½CT C�ijOj(t)zUi(O,t),
ð28Þ

where neuron i fires a spike if Vi(t)wHi, with threshold Hi~P
j C

2
ji=2. After firing a spike Vi(t) is reset to {Hi.

The dynamics of the slow currents Ui(O,t)~Yi(t)zX
j
CT

ij Zj(t)
2 are given by

_YY i(t)~{lYi(t)z
X

j

VijOj(t)

_ZZi(t)~{lZi(t)z
X

j

KijOj(t),
ð29Þ

with weights V~CT (lC{dC’z
s2

2
C’’) and K~

sffiffiffi
2
p C’.

Decoding
Decoding in our model reduces to a simple leaky integration of

output spikes according to equation (3) of the main text. We can

either assume that kernel C is known a-priori or we can learn it

from the output tuning curves, f, and covariance matrix,
P

using

the relation [6]:

C’(xt)~
X

{1(xt)f’(xt): ð30Þ

The two methods give virtually identical results. All results

reported in this paper use learnt kernels.

On every trial, we measure the mean and variance of the

posterior that we decode from the output spike patterns. The

estimator of the stimulus mean, x̂x(t) is its expected value:

x̂x(t)~
X

i
xiexp(Gi(t)). Its variance, s2

out(t) is computed as

the second mode of the output posterior, i.e. s2
out(t)~X

i
(xi{x̂x(t))2exp(Gi(t)).

We measure coding accuracy over many trials as the variance,

ŝs2(t), of the stimulus mean x̂x(t) around the real value x(t). Notice,

that variance of the estimator should equal the posterior variances

averaged over many trials, i.e. ŝs2(t)&Ss2
out(t)T, where S:T denotes

average over trials. For simplicity, we only report the performance

measured by ŝs2(t).

Measuring predictability
We will use an indirect measure to assess the predictability of

the response of a neuron m conditioned on the spike trains

recorded from a subpopulation of M neurons. Let us define the

‘‘predicted membrane potential’’ V̂Vm of neuron m as

_̂
VV̂VVm(t)~{lV̂Vm(t)zUm(t)z

X
k=m

W out
mk Ok(t), ð31Þ

where the sum runs over all recorded neurons and Um(t) is given

by

_UUm(t)~{lUm(t)z
X
k=m

VmkOk(t): ð32Þ

The predicted membrane potential depicts the total external

‘‘driving force’’ that neuron m receives from the M{1 other

neurons in the subpopulation. Neurons are generally strongly

driven by external input right before they spike. Thus, a high

predicted membrane potential and hence a high driving force is an

indicator for an enhanced firing probability. We use this intuition

to define the predictability, Pm, of the activity of neuron m on a

given trial as

Pm~

Ð
V̂Vm(t)Om(t)dt{

Ð
V̂Vm(t)Osh

m (t)dt

sV̂Vm

, ð33Þ

where sV̂Vm
is the standard deviation of V̂Vm over the entire

duration of the trial and Osh
m denotes a shuffled version of spike

train Om. Thus, the predictability Pm measures the difference

between the spike-triggered predicted membrane potentials

computed from the recorded spike train and a random spike
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train with the same number of spikes. Normalizing by sV̂Vm
turns

Pm into something like a signal-to-noise ratio.

Encoding accuracy of the stochastic network
Here we derive an expression for the accuracy with which the

stochastic network of section ‘‘Comparison to a rate model’’ can

encode the underlying stimulus. The encoding accuracy of this

network is limited by two factors: the initial accuracy with which

the stimulus is encoded in the input populations and the additional

uncertainty that stochastic spike generation adds on top of it.

The input accuracy is determined by the Cramer-Rao bound,

s2
CR, which corresponds to the variance of an optimal estimator. It

is related to the Fisher information in the inputs. For the case of

uniformly arrayed tuning curves and Poisson firing statistics

(as is the case for the input populations), Fisher information, I(x,t),
after t seconds of integration, can be calculated as [55]:

I(x,t)~t
X

i

(f a0
i (x)zf v0

i (x))2

f a
i (x)zf v

i (x)
. The Cramer-Rao bound is then

given as the inverse of Fisher information, s2
CR~1=I(x,t).

The output neurons in the stochastic network fire Poisson spikes

from a rate, r(t), that corresponds to the sum of input spike counts

scaled by gain factor K:

r(t)~K

ð
(Sa(t’)zSv(t’))dt’, ð34Þ

This corresponds to a mean rate �rr(t)~tK(fa(x)zfv(x)). It is

obvious, that an optimal estimator of the Poisson spike trains

generated from these rates would have a variance of
1

K
s2

CR.

The noise in input and output spike generation is independent

from each other. The variances of input and output estimators

therefore add up and we find that the accuracy of an optimal

observer of the stochastic output spike trains is given as

ŝs2
stoch~s2

CR(1z1=K).

Simulation details
The network structure is outlined in figure 1B. Each neural

layer contains N~50 neurons. Input tuning curves are circular

Gaussians. For neuron j it would take the form fj(xt)~
g exp ½cos(xt{xj){1�=w2

� �
zn where the preferred direction xj

is given by xj~2p=Nj. We use gv~10 Hz, wv~30 deg and

nv~18:75 Hz for the visual input and ga~8 Hz, wa~35 deg and

na~15 Hz for the auditory input population. The only exception

is the simulation of the stochastic network (figure 8B), where we

use identical tuning curves in the two inputs ga~gv~8 Hz,

wa~wv~30 deg and na~nv~15 Hz.

The input kernels are given by the log tuning curves: H~log f.

Since we are interested in the log posterior up to an additive

constant only, we are free to add or subtract a constant from the

kernels. We therefore shift the input kernels, such that
P

i Hij~0.

In this way, each input spike adds on average zero to the log

posterior L. A direct consequence of this shift is that the bias term

yi (see eq. 7) equals zero and hence disappears.

The output kernel C is also chosen to be a circular Gaussian

with gC~1:9 Hz, wC~20 deg and nC~0. For figures 3E and 4B–

4E we used gC~1:5 Hz whereas all other parameters remained

the same. In accordance with the input kernels, the baseline of C is

set such that
P

i Cij~0.

Parameters for the stimulus dynamics are d~0:25 and s~0:2.

These full dynamics are used in figure 2 and 3. Figure 5 only uses

the diffusion and the other figures use static stimuli. The neural

leak is set to l~8 s{1.

In order to change the reliability of the input cues (for the

simulation in figures 4A and 5C), we multiply the tuning curve of

the input neurons in a population by a constant c. This changes

the Fisher information contained in this population by the

multiplicative factor c: Ic(x)~
P

i (cf
0

i (x))2=(cfi(x))~cI(x). The

Cramer-Rao bound of an optimal estimator is therefore divided by

c. Notice that the input kernels and therefore the feed-forward

weights remain unchanged by this operation.

To test the robustness of our network to noise, we add a

Gaussian white noise term to the membrane potential:
_VVi(t)~{lVi(t)zIi(t)zUi(O,t)zsnoiseji(t), where Ii(t) denotes

the spiking input to neuron i and ji(t) is a white noise term with

unit variance, ji(t)*N (0,1). Our simulations are done with noise

strengths of snoise~2, snoise~4 and snoise~6.

The differential equations of the membrane potentials are

integrated using an Euler method with time step dt~0:1 ms. As

neighboring output neurons get highly similar input, it is often the

case that various neurons cross their spiking threshold in the same

time step dt. If this happens, we determine which neuron would

cross the threshold first assuming a linear voltage increase during

the interval dt. We then let this neuron spike and reset its

neighbors. Should there still be a neuron above threshold after this

reset, we let it spike as well and so forth until no more neuron is

above threshold. We then continue to the next integration step. In

most cases however, only one neuron will spike per time interval

dt.
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