I. Pavlov, Conditioned reflexes, 1927.

M. Bouton and R. Bolles, Contextual control of the extinction of conditioned fear, Learning and Motivation, vol.10, issue.4, pp.445-466, 1979.
DOI : 10.1016/0023-9690(79)90057-2

M. Bouton, R. Westbrook, K. Corcoran, and M. S. , Contextual and Temporal Modulation of Extinction: Behavioral and Biological Mechanisms, Biological Psychiatry, vol.60, issue.4, pp.352-360, 2006.
DOI : 10.1016/j.biopsych.2005.12.015

J. Ledoux, The amygdala and emotion: a view through fear, 2000.

K. Myers and M. Davis, Mechanisms of fear extinction, Molecular Psychiatry, vol.62, issue.2, pp.120-150, 2007.
DOI : 10.1016/j.neuroscience.2006.07.013

G. Quirk and D. Mueller, Neural Mechanisms of Extinction Learning and Retrieval, Neuropsychopharmacology, vol.62, issue.1, pp.56-72, 2007.
DOI : 10.1523/JNEUROSCI.3842-06.2007

L. Romanski, M. Clugnet, F. Bordi, and J. Ledoux, Somatosensory and auditory convergence in the lateral nucleus of the amygdala., Behavioral Neuroscience, vol.107, issue.3, pp.444-450, 1993.
DOI : 10.1037/0735-7044.107.3.444

S. Barot, Y. Kyono, E. Clark, and I. Bernstein, Visualizing stimulus convergence in amygdala neurons during associative learning, Proceedings of the National Academy of Sciences, vol.105, issue.52, pp.20959-20963, 2008.
DOI : 10.1073/pnas.0808996106

T. Sigurdsson, V. Doyère, C. Cain, and J. Ledoux, Long-term potentiation in the amygdala: A cellular mechanism of fear learning and memory, Neuropharmacology, vol.52, issue.1, pp.215-227, 2007.
DOI : 10.1016/j.neuropharm.2006.06.022

URL : https://hal.archives-ouvertes.fr/hal-01468048

D. Paré, G. Quirk, and J. Ledoux, New Vistas on Amygdala Networks in Conditioned Fear, Journal of Neurophysiology, vol.92, issue.1, pp.1-9, 2004.
DOI : 10.1152/jn.00153.2004

J. Ledoux, J. Iwata, P. Cicchetti, and D. Reis, Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear, J Neurosci, vol.8, pp.2517-2529, 1988.

J. Muller, K. Corodimas, Z. Fridel, and J. Ledoux, Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli., Behavioral Neuroscience, vol.111, issue.4, pp.683-691, 1997.
DOI : 10.1037/0735-7044.111.4.683

K. Goosens and M. S. , Contextual and Auditory Fear Conditioning are Mediated by the Lateral, Basal, and Central Amygdaloid Nuclei in Rats, Learning & Memory, vol.8, issue.3, pp.148-155, 2001.
DOI : 10.1101/lm.37601

D. Anglada-figueroa and G. Quirk, Lesions of the Basal Amygdala Block Expression of Conditioned Fear But Not Extinction, Journal of Neuroscience, vol.25, issue.42, pp.9680-9685, 2005.
DOI : 10.1523/JNEUROSCI.2600-05.2005

S. Maren, A. Poremba, and M. Gabriel, Basolateral amygdaloid multi-unit neuronal correlates of discriminative avoidance learning in rabbits, Brain Research, vol.549, issue.2, pp.311-316, 1991.
DOI : 10.1016/0006-8993(91)90473-9

K. Muramoto, T. Ono, H. Nishijo, and M. Fukuda, Rat amygdaloid neuron responses during auditory discrimination, Neuroscience, vol.52, issue.3, pp.621-636, 1993.
DOI : 10.1016/0306-4522(93)90411-8

C. Herry, S. Ciocchi, V. Senn, L. Demmou, and C. Muller, Switching on and off fear by distinct neuronal circuits, Nature, vol.98, issue.7204, pp.600-606, 2008.
DOI : 10.1038/nature07166

S. Ciocchi, C. Herry, F. Grenier, S. Wolff, and J. Letzkus, Encoding of conditioned fear in central amygdala inhibitory circuits, Nature, vol.4, issue.7321, pp.277-282, 2010.
DOI : 10.1038/nature09559

H. Wilson and J. Cowan, Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons, Biophysical Journal, vol.12, issue.1, pp.1-24, 1972.
DOI : 10.1016/S0006-3495(72)86068-5

J. Knierim, Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells, J Neurosci, vol.22, pp.6254-6264, 2002.

C. Kentros, N. Agnihotri, S. Streater, R. Hawkins, and E. Kandel, Increased Attention to Spatial Context Increases Both Place Field Stability and Spatial Memory, Neuron, vol.42, issue.2, pp.283-295, 2004.
DOI : 10.1016/S0896-6273(04)00192-8

J. Leutgeb, S. Leutgeb, M. Moser, and E. Moser, Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus, Science, vol.315, issue.5814, pp.961-966, 2007.
DOI : 10.1126/science.1135801

J. Repa, J. Muller, J. Apergis, T. Desrochers, and Y. Zhou, Two different lateral amygdala cell populations contribute to the initiation and storage of memory, Nature Neuroscience, vol.4, issue.7, pp.724-731, 2001.
DOI : 10.1038/89512

P. Sah, E. Faber, M. Armentia, and J. Power, The Amygdaloid Complex: Anatomy and Physiology, Physiological Reviews, vol.83, issue.3, pp.803-834, 2003.
DOI : 10.1152/physrev.00002.2003

E. Nordlie, M. Gewaltig, and H. Plesser, Towards Reproducible Descriptions of Neuronal Network Models, PLoS Computational Biology, vol.367, issue.8, p.1000456, 2009.
DOI : 10.1371/journal.pcbi.1000456.s003

A. Prinz, D. Bucher, and E. Marder, Similar network activity from disparate circuit parameters, Nature Neuroscience, vol.7, issue.12, pp.1345-1352, 2004.
DOI : 10.1038/nn1352

W. Gerstner and R. Naud, How Good Are Neuron Models?, Science, vol.326, issue.5951, pp.379-380, 2009.
DOI : 10.1126/science.1181936

URL : http://infoscience.epfl.ch/record/142067

A. Morrison, C. Mehring, T. Geisel, A. Aertsen, and M. Diesmann, Advancing the Boundaries of High-Connectivity Network Simulation with Distributed Computing, Neural Computation, vol.18, issue.10, pp.1776-1801, 2005.
DOI : 10.1016/0166-2236(94)90121-X

A. Mcdonald, Cortical pathways to the mammalian amygdala, Progress in Neurobiology, vol.55, issue.3, pp.257-332, 1998.
DOI : 10.1016/S0301-0082(98)00003-3

J. Tuunanen and A. Pitkä-nen, Do seizures cause neuronal damage in rat amygdala kindling?, Epilepsy Research, vol.39, issue.2, pp.171-176, 2000.
DOI : 10.1016/S0920-1211(99)00123-0

A. Kuhn, A. Aertsen, and S. Rotter, Neuronal Integration of Synaptic Input in the Fluctuation-Driven Regime, Journal of Neuroscience, vol.24, issue.10, pp.2345-2356, 2004.
DOI : 10.1523/JNEUROSCI.3349-03.2004

A. Kumar, S. Schrader, A. Aertsen, and S. Rotter, The High-Conductance State of Cortical Networks, Neural Computation, vol.23, issue.19, pp.1-43, 2008.
DOI : 10.1007/BF00288786

A. Kumar, S. Rotter, and A. Aertsen, Conditions for Propagating Synchronous Spiking and Asynchronous Firing Rates in a Cortical Network Model, Journal of Neuroscience, vol.28, issue.20, pp.5268-5280, 2008.
DOI : 10.1523/JNEUROSCI.2542-07.2008

E. Izhikevich, Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling, Cerebral Cortex, vol.17, issue.10, pp.2443-2452, 2007.
DOI : 10.1093/cercor/bhl152

J. Kim, S. Lee, K. Park, I. Hong, and B. Song, Amygdala depotentiation and fear extinction, Proceedings of the National Academy of Sciences, vol.104, issue.52, pp.20955-20960, 2007.
DOI : 10.1073/pnas.0710548105

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409248

I. Hong, B. Song, S. Lee, J. Kim, and J. Kim, Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala, European Journal of Neuroscience, vol.106, issue.11, pp.2089-2099, 2009.
DOI : 10.1111/j.1460-9568.2009.07004.x

DOI : 10.1142/9789812795885_0006

M. Bear, L. Cooper, and F. Ebner, A physiological basis for a theory of synapse modification, Science, vol.237, issue.4810, pp.42-48, 1987.
DOI : 10.1126/science.3037696

J. Lisman, A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory., Proceedings of the National Academy of Sciences, vol.86, issue.23, pp.9574-9578, 1989.
DOI : 10.1073/pnas.86.23.9574

H. Shouval, M. Bear, and L. Cooper, A unified model of NMDA receptor-dependent bidirectional synaptic plasticity, Proceedings of the National Academy of Sciences, vol.99, issue.16, pp.10831-10836, 2002.
DOI : 10.1073/pnas.152343099

A. Artola, S. Brocher, and W. Singer, Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex, Nature, vol.347, issue.6288, pp.69-72, 1990.
DOI : 10.1038/347069a0

A. Artola and W. Singer, Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation, Trends in Neurosciences, vol.16, issue.11, pp.480-487, 1993.
DOI : 10.1016/0166-2236(93)90081-V

R. Malenka and M. Bear, LTP and LTD, Neuron, vol.44, issue.1, pp.5-21, 2004.
DOI : 10.1016/j.neuron.2004.09.012

URL : http://doi.org/10.1016/j.neuron.2004.09.012

J. Lisman and N. Spruston, Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity, Nature Neuroscience, vol.46, issue.7, pp.839-841, 2005.
DOI : 10.1038/nn0705-839

J. Hardie and N. Spruston, Synaptic Depolarization Is More Effective than Back-Propagating Action Potentials during Induction of Associative Long-Term Potentiation in Hippocampal Pyramidal Neurons, Journal of Neuroscience, vol.29, issue.10, pp.3233-3241, 2009.
DOI : 10.1523/JNEUROSCI.6000-08.2009

Y. Humeau, H. Shaban, S. Bissiere, and A. Luthi, Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain, Nature, vol.426, issue.6968, pp.841-845, 2003.
DOI : 10.1038/nature02194

U. Frey and R. Morris, Synaptic tagging and long-term potentiation, Nature, vol.385, issue.6616, pp.533-536, 1997.
DOI : 10.1038/385533a0

A. Barria, D. Muller, V. Derkach, L. Griffith, and T. Soderling, Regulatory Phosphorylation of AMPA-Type Glutamate Receptors by CaM-KII During Long-Term Potentiation, Science, vol.276, issue.5321, pp.2042-2045, 1997.
DOI : 10.1126/science.276.5321.2042

C. Harley, Norepinephrine and Dopamine as Learning Signals, Neural Plasticity, vol.11, issue.3-4, pp.191-204, 2004.
DOI : 10.1155/NP.2004.191

URL : http://doi.org/10.1155/np.2004.191

DOI : 10.1146/annurev.neuro.27.070203.144157

K. Tully, Y. Li, E. Tsvetkov, and V. Bolshakov, Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses, Proceedings of the National Academy of Sciences, vol.104, issue.35, pp.14146-50, 2007.
DOI : 10.1073/pnas.0704621104

E. Faber, A. Delaney, J. Power, P. Sedlak, and J. Crane, Modulation of SK Channel Trafficking by Beta Adrenoceptors Enhances Excitatory Synaptic Transmission and Plasticity in the Amygdala, Journal of Neuroscience, vol.28, issue.43, pp.10803-10813, 2008.
DOI : 10.1523/JNEUROSCI.1796-08.2008

C. Pinard, J. Muller, F. Mascagni, and A. Mcdonald, Dopaminergic innervation of interneurons in the rat basolateral amygdala, Neuroscience, vol.157, issue.4, pp.850-863, 2008.
DOI : 10.1016/j.neuroscience.2008.09.043

J. Muller, F. Mascagni, and A. Mcdonald, Dopaminergic innervation of pyramidal cells in the rat basolateral amygdala, Brain Structure and Function, vol.26, issue.Suppl 1, pp.275-288, 2009.
DOI : 10.1007/s00429-008-0196-y

A. Davison, D. Brüderle, J. Eppler, J. Kremkow, and E. Muller, PyNN: a common interface for neuronal network simulators, Frontiers in Neuroinformatics, vol.2, p.11, 2008.
DOI : 10.3389/neuro.11.011.2008

URL : https://hal.archives-ouvertes.fr/hal-00586786

M. Gewaltig and M. Diesmann, NEST (NEural Simulation Tool), Scholarpedia, vol.2, issue.4, p.1430, 2007.
DOI : 10.4249/scholarpedia.1430

J. Harris, M. Jones, G. Bailey, and R. Westbrook, Contextual control over conditioned responding in an extinction paradigm., Journal of Experimental Psychology: Animal Behavior Processes, vol.26, issue.2, pp.174-185, 2000.
DOI : 10.1037/0097-7403.26.2.174

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Bouton, Context, ambiguity, and unlearning: sources of relapse after behavioral extinction, Biological Psychiatry, vol.52, issue.10, pp.976-986, 2002.
DOI : 10.1016/S0006-3223(02)01546-9

J. Denniston, R. Chang, and R. Miller, Massive extinction treatment attenuates the renewal effect, Learning and Motivation, vol.34, issue.1, pp.68-86, 2003.
DOI : 10.1016/S0023-9690(02)00508-8

A. Woodruff and P. Sah, Networks of Parvalbumin-Positive Interneurons in the Basolateral Amygdala, Journal of Neuroscience, vol.27, issue.3, pp.553-563, 2007.
DOI : 10.1523/JNEUROSCI.3686-06.2007

C. Gray and W. Singer, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex., Proceedings of the National Academy of Sciences, vol.86, issue.5, pp.1698-1702, 1989.
DOI : 10.1073/pnas.86.5.1698

G. Buzsaki, Z. Horvath, R. Urioste, J. Hetke, and K. Wise, High-frequency network oscillation in the hippocampus, Science, vol.256, issue.5059, pp.1025-1027, 1992.
DOI : 10.1126/science.1589772

M. Whittington, R. Traub, and J. Jefferys, Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation, Nature, vol.373, issue.6515, pp.612-615, 1995.
DOI : 10.1038/373612a0

M. Bartos, I. Vida, M. Frotscher, A. Meyer, and H. Monyer, Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks, Proceedings of the National Academy of Sciences, vol.99, issue.20, pp.13222-13227, 2002.
DOI : 10.1073/pnas.192233099

M. Bartos, I. Vida, and J. P. , Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks, Nature Reviews Neuroscience, vol.17, issue.1, pp.45-56, 2007.
DOI : 10.1111/j.1460-9568.1994.tb00994.x

W. Lytton and T. Sejnowski, Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons, J Neurophysiol, vol.66, pp.1059-1079, 1991.

M. Erb and A. Aertsen, Dynamics of Activity in Biology-Oriented Neural Network Models: Stability at Low Firing Rates, Information Processing in the Cortex: Experiments and Theory, p.477, 1992.
DOI : 10.1007/978-3-642-49967-8_14

A. Aertsen and M. Arndt, Response synchronization in the visual cortex, Current Opinion in Neurobiology, vol.3, issue.4, pp.586-594, 1993.
DOI : 10.1016/0959-4388(93)90060-C

C. Vreeswijk, L. Abbott, and G. Ermentrout, When inhibition not excitation synchronizes neural firing, Journal of Computational Neuroscience, vol.16, issue.4, pp.313-321, 1994.
DOI : 10.1007/BF00961879

R. Traub, M. Whittington, I. Stanford, and J. Jefferys, A mechanism for generation of long-range synchronous fast oscillations in the cortex, Nature, vol.383, issue.6601, pp.621-624, 1996.
DOI : 10.1038/383621a0

N. Brunel and V. Hakim, Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates, Neural Computation, vol.15, issue.7, pp.1621-1671, 1999.
DOI : 10.1038/373612a0

N. Brunel and X. Wang, What Determines the Frequency of Fast Network Oscillations With Irregular Neural Discharges? I. Synaptic Dynamics and Excitation-Inhibition Balance, Journal of Neurophysiology, vol.90, issue.1, pp.415-430, 2003.
DOI : 10.1152/jn.01095.2002

R. Maex and E. Schutter, Resonant Synchronization in Heterogeneous Networks of Inhibitory Neurons, J Neurosci, vol.23, pp.10503-10514, 2003.

D. Collins, J. Pelletier, and D. Paré, Slow and fast (gamma) neuronal oscillations in the perirhinal cortex and lateral amygdala, J Neurophysiol, vol.85, pp.1661-1672, 2001.

A. Ponomarenko, T. Korotkova, and H. Haas, High frequency (200 Hz) oscillations and firing patterns in the basolateral amygdala and dorsal endopiriform nucleus of the behaving rat, Behavioural Brain Research, vol.141, issue.2, pp.123-129, 2003.
DOI : 10.1016/S0166-4328(02)00327-3

A. Popescu, D. Popa, and D. Pare, Coherent gamma oscillations couple the amygdala and striatum during learning, Nature Neuroscience, vol.9, issue.6, pp.801-807, 2009.
DOI : 10.1038/nn.2305

D. Paré, D. Collins, and J. Pelletier, Amygdala oscillations and the consolidation of emotional memories, Trends in Cognitive Sciences, vol.6, issue.7, pp.306-314, 2002.
DOI : 10.1016/S1364-6613(02)01924-1

L. Neltner, D. Hansel, G. Mato, and C. Meunier, Synchrony in Heterogeneous Networks of Spiking Neurons, Neural Computation, vol.16, issue.7, pp.1607-1641, 2000.
DOI : 10.1038/373612a0

M. Denker, M. Timme, M. Diesmann, F. Wolf, and T. Geisel, Breaking Synchrony by Heterogeneity in Complex Networks, Physical Review Letters, vol.92, issue.7, p.74103, 2004.
DOI : 10.1103/PhysRevLett.92.074103

H. Markram, M. Toledo-rodriguez, Y. Wang, A. Gupta, and G. Silberberg, Interneurons of the neocortical inhibitory system, Nature Reviews Neuroscience, vol.19, issue.10, pp.793-807, 2004.
DOI : 10.1016/S0166-2236(02)02151-3

P. Jonas, J. Bischofberger, D. Fricker, and R. Miles, Interneuron Diversity series: Fast in, fast out ??? temporal and spatial signal processing in hippocampal interneurons, Trends in Neurosciences, vol.27, issue.1, pp.30-40, 2004.
DOI : 10.1016/j.tins.2003.10.010

I. Vlachos, A. Kumar, A. Luthi, and A. Aertsen, Dynamical emergence of fear and extinction cells in the amygdala ??? a computational model, BMC Neuroscience, vol.10, issue.Suppl 1, p.142, 2009.
DOI : 10.1186/1471-2202-10-S1-P142

A. Roxin, N. Brunel, and D. Hansel, Role of Delays in Shaping Spatiotemporal Dynamics of Neuronal Activity in Large Networks, Physical Review Letters, vol.94, issue.23, pp.238103-238107, 2005.
DOI : 10.1103/PhysRevLett.94.238103

URL : https://hal.archives-ouvertes.fr/hal-00094058

D. Berlau and J. Mcgaugh, Enhancement of extinction memory consolidation: The role of the noradrenergic and GABAergic systems within the basolateral amygdala, Neurobiology of Learning and Memory, vol.86, issue.2, pp.123-132, 2006.
DOI : 10.1016/j.nlm.2005.12.008

K. Corcoran, T. Desmond, K. Frey, and M. S. , Hippocampal Inactivation Disrupts the Acquisition and Contextual Encoding of Fear Extinction, Journal of Neuroscience, vol.25, issue.39, pp.8978-8987, 2005.
DOI : 10.1523/JNEUROSCI.2246-05.2005

J. Ji and M. S. , Electrolytic lesions of the dorsal hippocampus disrupt renewal of conditional fear after extinction, Learning & Memory, vol.12, issue.3, pp.270-276, 2005.
DOI : 10.1101/lm.91705

K. Corcoran and M. S. , Factors Regulating the Effects of Hippocampal Inactivation on Renewal of Conditional Fear After Extinction, Learning & Memory, vol.11, issue.5, pp.598-603, 2004.
DOI : 10.1101/lm.78704

J. Ji and M. S. , Hippocampal involvement in contextual modulation of fear extinction, Hippocampus, vol.109, issue.9, pp.749-758, 2007.
DOI : 10.1002/hipo.20331

S. Barot, A. Chung, J. Kim, and I. Bernstein, Functional Imaging of Stimulus Convergence in Amygdalar Neurons during Pavlovian Fear Conditioning, PLoS ONE, vol.4, issue.7, p.6156, 2009.
DOI : 10.1371/journal.pone.0006156.s002

J. Fuster, Distributed Memory for Both Short and Long Term, Neurobiology of Learning and Memory, vol.70, issue.1-2, pp.268-274, 1998.
DOI : 10.1006/nlme.1998.3852

S. Maren and M. Fanselow, Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo, J Neurosci, vol.15, pp.7548-7564, 1995.

A. Pitkä-nen, Connectivity of the rat amygdaloid complex, pp.31-115, 2000.

J. Hobin, K. Goosens, and M. S. , Context-Dependent Neuronal Activity in the Lateral Amygdala Represents Fear Memories after Extinction, J Neurosci, vol.23, pp.8410-8416, 2003.

S. Hugues and R. Garcia, Reorganization of learning-associated prefrontal synaptic plasticity between the recall of recent and remote fear extinction memory, Learning & Memory, vol.14, issue.8, pp.520-524, 2007.
DOI : 10.1101/lm.625407

M. Farinelli, O. Deschaux, S. Hugues, A. Thevenet, and R. Garcia, Hippocampal train stimulation modulates recallof fear extinction independently of prefrontalcortex synaptic plasticity and lesions, Learning & Memory, vol.13, issue.3, pp.329-334, 2006.
DOI : 10.1101/lm.204806

S. Anagnostaras, G. Gale, and M. Fanselow, Hippocampus and contextual fear conditioning: Recent controversies and advances, Hippocampus, vol.250, issue.1, pp.8-17, 2001.
DOI : 10.1002/1098-1063(2001)11:1<8::AID-HIPO1015>3.0.CO;2-7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Rudy, N. Huff, and P. Matus-amat, Understanding contextual fear conditioning: insights from a two-process model, Neuroscience & Biobehavioral Reviews, vol.28, issue.7, pp.675-685, 2004.
DOI : 10.1016/j.neubiorev.2004.09.004

N. Hessler, A. Shirke, and R. Malinow, The probability of transmitter release at a mammalian central synapse, Nature, vol.366, issue.6455, pp.569-572, 1993.
DOI : 10.1038/366569a0

A. Gulyás, R. Miles, A. Sk, K. Tóth, and N. Tamamaki, Hippocampal pyramidal cells excite inhibitory neurons through a single release site, Nature, vol.366, issue.6456, pp.683-687, 1993.
DOI : 10.1038/366683a0

W. Singer and C. Gray, Visual Feature Integration and the Temporal Correlation Hypothesis, Annual Review of Neuroscience, vol.18, issue.1, pp.555-586, 1995.
DOI : 10.1146/annurev.ne.18.030195.003011

V. Der-malsburg and C. , Binding in models of perception and brain function, Current Opinion in Neurobiology, vol.5, issue.4, pp.520-526, 1995.
DOI : 10.1016/0959-4388(95)80014-X

P. Fries, J. Reynolds, A. Rorie, and R. Desimone, Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention, Science, vol.291, issue.5508, pp.1560-1563, 2001.
DOI : 10.1126/science.1055465

J. Lisman and M. Idiart, Storage of 7 +/- 2 short-term memories in oscillatory subcycles, Science, vol.267, issue.5203, pp.1512-1515, 1995.
DOI : 10.1126/science.7878473

S. Montgomery and G. Buzsáki, Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance, Proceedings of the National Academy of Sciences, vol.104, issue.36, pp.14495-14500, 2007.
DOI : 10.1073/pnas.0701826104

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1964875

T. Seidenbecher, T. Laxmi, O. Stork, and H. Pape, Amygdalar and Hippocampal Theta Rhythm Synchronization During Fear Memory Retrieval, Science, vol.301, issue.5634, pp.846-850, 2003.
DOI : 10.1126/science.1085818

H. Pape, R. Narayanan, J. Smid, O. Stork, and T. Seidenbecher, Theta activity in neurons and networks of the amygdala related to long-term fear memory, Hippocampus, vol.81, issue.7, pp.874-880, 2005.
DOI : 10.1002/hipo.20120

J. Crane, F. Windels, and P. Sah, Oscillations in the Basolateral Amygdala: Aversive Stimulation Is State Dependent and Resets the Oscillatory Phase, Journal of Neurophysiology, vol.102, issue.3, pp.1379-1387, 2009.
DOI : 10.1152/jn.00438.2009

E. Bauer, R. Paz, and D. Pare, Gamma Oscillations Coordinate Amygdalo-Rhinal Interactions during Learning, Journal of Neuroscience, vol.27, issue.35, pp.9369-9379, 2007.
DOI : 10.1523/JNEUROSCI.2153-07.2007

R. Rescorla, Pavlovian conditioned inhibition., Psychological Bulletin, vol.72, issue.2, pp.77-94, 1969.
DOI : 10.1037/h0027760

A. Newell and H. Simon, Computer science as empirical inquiry: symbols and search, Communications of the ACM, vol.19, issue.3, pp.113-126, 1976.
DOI : 10.1145/360018.360022

N. Schmajuk, Computational models of classical conditioning, Scholarpedia, vol.3, issue.3, p.1664, 2008.
DOI : 10.4249/scholarpedia.1664

R. Rescorla, Rescorla-Wagner model, Scholarpedia, vol.3, issue.3, 2008.
DOI : 10.4249/scholarpedia.2237

A. Wagner, SOP: A model of automatic memory processing in animal behavior Information processing in animals: Memory mechanisms. Hillsdale: Erlbaum, pp.5-47, 1981.

S. Brandon, E. Vogel, and A. Wagner, Stimulus representation in SOP: I, Behavioural Processes, vol.62, issue.1-3, pp.5-25, 2003.
DOI : 10.1016/S0376-6357(03)00016-0

J. Armony, D. Servan-schreiber, J. Cohen, and J. Ledoux, Computational modeling of emotion: explorations through the anatomy and physiology of fear conditioning, Trends in Cognitive Sciences, vol.1, issue.1, pp.28-34, 1997.
DOI : 10.1016/S1364-6613(97)01007-3

G. Li, S. Nair, and G. Quirk, A Biologically Realistic Network Model of Acquisition and Extinction of Conditioned Fear Associations in Lateral Amygdala Neurons, Journal of Neurophysiology, vol.101, issue.3, pp.1629-1646, 2009.
DOI : 10.1152/jn.90765.2008