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Spectrin repeats have been largely considered as passive linkers or spacers with little functional role
other than to convey flexibility to a protein. Whilst this is undoubtedly part of their function, it is by
no means all. Whilst the overt structure of all spectrin repeats is a simple triple-helical coiled coil,
the linkages between repeats and the surface properties of repeats vary widely. Spectrin repeats in
different proteins can act as dimerisation interfaces, platforms for the recruitment of signalling
molecules, and as a site for the interaction with cytoskeletal elements and even direct association
with membrane lipids. In the case of dystrophin several of these functions overlap in the space of
a few repeats.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The presence of multiple coiled coil modules, and in particular
spectrin repeats is a common feature of cytoskeletal linking pro-
teins, or cytolinkers. Cytolinker was a term originally coined to de-
scribe plectin [1] but has now been adopted to describe a broader
group of proteins including plakins, nesprins and spectrin family
proteins, all of which contain multiple spectrin repeats. The pres-
ence of spectrin repeats in these cytolinkers can mediate self asso-
ciation and permits flexible and perhaps extensible linkages so the
proteins can connect between different cytoskeletal filament sys-
tems, or between cytoskeletal systems and cellular membranes.
However in recent years evidence has emerged of a role for the
spectrin repeat as a binding interface in its own right, making
direct protein–protein interactions and in some cases protein-lipid
interactions.
chemical Societies. Published by E

er).
2. Overview of the family of spectrin repeat containing proteins

More than 97% of known spectrin repeat containing proteins are
found in metazoans with over two thirds of those in chordates [2].
Despite scattered examples of spectrin repeats in all other king-
doms, this would tend to suggest that the spectrin repeat arose
with the evolution of the animal kingdom. With the exception of
one or two outliers, as mentioned above, most proteins are
considered as cytolinkers and can be broadly grouped into 2 or 3
families depending on ones perspective. The eponymous family
from which the repeat derives its name includes the proteins a-
actinin, spectrins themselves and dystrophin and utrophin. These
proteins share a variable number of spectrin-like repeats, from 4
in a-actinin to 24 in dystrophin, and depending on the protein also
have an amino-terminal actin binding domain comprising tandem
CH domains and carboxy-terminal calcium binding EF hands. In
addition different family members have acquired additional
domains specific to their cellular functions, including PH, SH3,
WW and ZnF (Fig. 1A). Full listings and domain compositions can
be found in several online databases for example SMART, PFAM
and Domain Club (http://smart.embl-heidelberg.de/, http://pfam.
lsevier B.V. All rights reserved.
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Fig. 1. Schematic representation of selected members of spectrin repeat containing proteins from the three main families. (A) Dystrophin; (B) Plectin and (C) DBL-like.
Modules are coded according to the style and nomenclature of Pawson and Nash [53] with the addition of the Sec14 domain [54] (yellow box) and ZZ domain [55] (purple
box) and plectin repeats (magenta heptagons). Definitive publications to the modules shown above are: CC [56] CH [57] DH [58] EF [59] PH [60,61] Plec [62] SH3 [63,64] Spec
[7] WW [65].
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sanger.ac.uk/, http://pawsonlab.mshri.on.ca/DomainClub/domain-
Club.php). For the purposes of this review we will discuss in more
detail new functions and properties of the spectrin repeats of the
spectrin family member dystrophin.

The plakin family of proteins is characterised by the presence of
plectin repeats and spectrin repeats often interspersed with other
sequences with a propensity to form dimeric coiled coils. Other
modules found in plakins include tandem CH domains, EF hands,
SH3 and KASH again dependent on cellular function (Fig. 1B).
Plakin family proteins function to interconnect different cytoskel-
etal filament networks with each other and directly to membranes
or membrane associated structures. Depending on their domain
composition they variously connect intermediate filaments via
their plectin repeats (e.g. desmoplakin, plectin and some nesprin
isoforms), actin filaments via their CH domains (plectin, MACF1
and some nesprin isoforms) and microtubules (plectin, MACF1).
In turn they associate with other membrane anchored proteins in
the plasma membrane at adhesion sites such as costameres, des-
mosomes and hemidesmosomes. The plakins also have roles in
organelle positioning including mitochondria and Golgi, and in
the maintenance of nuclear membrane connectivity to the cyto-
skeleton as well as the structure of the nuclear lamina. Readers
are referred to more authoritative reviews for details of these func-
tions [3,4].

In addition to multiple repeated copies of spectrin repeats in the
cytolinker proteins mentioned above, spectrin repeats also occur
sparsely in some Rho family guanine nucleotide exchange factors
(RhoGEFs) including the RhoGEF DBL, its big sister MCF2L and
more distant relatives such as trio and kalirin. With the exception
of DBL itself, these all contain an amino terminal SEC14 domain,
followed by one or more spectrin repeats followed by one or more
copies of the DH and PH domains characteristic of GEFs also with
SH3 and S/T kinase domains (Fig. 1C). Loss of the spectrin repeat
in kalirin alters is effects on actin based structures such as den-
dritic spines [5]. In a similar manner deletion of the spectrin repeat
from Dbl contributes to its oncogenic potential by removing bind-
ing sites for HSc70 and a ubiquitin ligase that serve to maintain
low steady state levels of the protein [6]. Thus the functions of
the spectrin repeats in kalirin and Dbl appear to control GEF func-
tion and/or targeting of the GEF activity.

3. Spectrin family repeat structure

The core elements of the spectrin repeat are a triple-helical
coiled-coil bundle, with the 3 helices forming the domain gently
curving and wrapping around each other in a left-handed supercoil
(Fig. 2). The archetypal spectrin repeat structure obtained from the
direct protein sequencing of spectrin in the early nineteen eighties
revealed a repeating 106 amino acid sequence with conserved
periodic hydrophobic and charged residues [7]. Predicted
sequences for dystrophin and a-actinin obtained slightly later by
DNA sequencing also revealed similarities to the repeating regions
of spectrin [8–10] but with slightly different average repeat
lengths of 122 and 109 residues for a-actinin and dystrophin,
respectively. An evolutionary relationship has also been proposed
for this protein family from a likely a-actinin ancestor and subse-
quent diversification to spectrins and then dystrophin/utrophin
[11–13]. The repeats of a-actinin and spectrin are known to form
dimers, indeed, the regular repeat length and conserved surface
charge particularly in the e and g positions in the heptad lends it-
self to dimerisation. By convention the amino acids in helices are
lettered from a to g to represent the 7 residues per two turns of
the helix, i.e. the heptad. Whilst hydrophobic residues at the a
and d positions in the heptad, a hallmark of a triple-helical coiled
coil, are conserved in dystrophin and its autosomal homologue
utrophin, they both lack the conservation of repeat length and
charged residues at the e and g positions in the heptad to form sta-
ble dimers [14–16] (Fig. 2).

The first structures of single spectrin repeats as predicted [17]
revealed tight triple a-helical coiled-coils [18,19]. However these
single repeat structures did not reveal the true spectrin coiled coil
structure due to either the long helix folding back on itself or the
repeat dimerising. It was only later when multiple repeats were
solved that the continuous relationship between the helices in
the repeat junction was elucidated [20–22] (Fig. 2). Furthermore
the crystal structures of a repeat pair from a-spectrin in multiple
crystal forms revealed the potential flexibility of spectrin repeats
[21] whereas structures of the four spectrin repeats from a-actinin
yielded a rather rigid dimerised structure [20,22]. As noted above,
dystrophin repeats are more variable in length and have more fre-
quent insertions in the helices [14] (Fig. 2). In addition, and in con-
trast to spectrin molecules, four predicted hinges separating the
rod region into three sub-regions were speculated to confer addi-
tional flexibility to the molecule (Fig. 3) [9]. The alpha-helical nat-
ure of the dystrophin spectrin-like repeats was confirmed,
however additional residues were required to extend the helices
into the adjoining helices in order to produce a stable fold [23–
25]. These studies suggested that the dystrophin repeats may fold
in an overlapping or nested manner with the structural integrity of
each repeat being reliant in part on its neighbours [16,26,27]. This
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Fig. 2. Clustal X derived sequence alignments and consensus sequence with confidence histogram in black, of the repeats from a-spectrin (A) and dystrophin (B). The original
sequence alignments from [14] were ‘realigned’ using Clustal X with the BLOSUM weight matrix ‘gap creation’ and ‘gap extension’ penalties set to maximum to preserve the
repeat boundaries of the original alignment. Conservation of the hydrophobic residues in the a and d positions of the heptad in blue is clear for spectrin and dystrophin,
however compared to dystrophin, the central spectrin B helix has a consistent length and has fewer proline residues (yellow) at the boundaries. Furthermore there is a much
higher degree of conservation in other positions in the heptad in a-spectrin repeats as indicated by the magenta (acidic), red (basic) and green (polar) with glycines in orange.
(C) Is a cylinder representation of the helices in a single repeat that by convention are named A, B and C and coded by colour to match the actual structure of an a-spectrin
repeat pair [66] shown in D. As can be seen in (D) the C helix in the N-terminal repeat (pale blue) is continuous with the A helix in the C-terminal repeat (sky blue).
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remains an unresolved problem, whilst we have some biochemical
understanding of the folding properties of the dystrophin repeats,
see for example [28] and reviewed in [29], we are still no closer
to a true structure of any of them. Nonetheless considerable insight
has been gained recently into dystrophin spectrin-repeat structure
and function from comprehensive molecular modelling studies.
By systematically analysing all successive pairwise dystrophin
repeats along the length of the dystrophin it was found that the
inter-helical linkers were for the majority helical, but for some
containing proline residues, these regions were modelled as small
loops and interpreted as likely points of additional flexibility [30].
The same points are also observed between the equivalent repeats
in utrophin but not in any spectrins [30]. Furthermore, analysis of
the surface properties of the repeat pairs revealed considerable
differences in hydrophobic and electrostatics surfaces [30], a
degree of variability which is in contrast to the uniformity of



Fig. 3. Schematic overview of spectrin repeat interactions in dystrophin. In keeping with established nomenclature [67] 4 hinge regions (H) are shown in red, however a fifth
extended region between repeats 15 and 16 which should probably be considered a hinge [68] is also depicted in red. Precise molecular details of which single repeats
interact with F-actin, phospholipids and the PDZ domain of nNOS are not known, and are therefore bracketed by repeat number. As can be seen repeats 16 and 17 have
overlapping functions as discussed in the text. The key interactions of the tandem CH domains with F-actin [69] and the WW domain with the PPPY of b-dystroglycan [70] are
also represented.
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structure and the probable uniformity of surface properties of
spectrin repeats (Fig. 2A). In turn it is this variability that is likely
to confer unique properties to the dystrophin repeats that will be
discussed in more detail below.

4. Spectrin-repeat interactions in dystrophin

4.1. Actin binding

Many members of the spectrin-repeat containing protein family
interact with the actin cytoskeleton. In most cases direct interac-
tion with F-actin is mediated by a pair of amino-terminal CH
domains, a well characterised actin binding module found in a
large number of F-actin binding proteins [31]. However in addition
to the CH domain mediated actin binding activity, the Ervasti lab
also characterised a second major actin binding region in dystro-
phin situated in repeats 11–17 [32,33] (Fig. 3). Whilst the affinities
of either the CH domain actin binding site and the dystrophin-
repeat actin binding site are individually relatively low, when
present together in the same molecule they act synergistically to
provide a high affinity interaction with F-actin [33,34]. Despite
the high degree of sequence homology over the whole length of
dystrophin and utrophin, utrophin does not share the same actin
binding functions in the central repeats [35]. Repeats 11–17 of
dystrophin are relatively basic in nature which facilitates an elec-
trostatic interaction with F-actin, whereas the equivalent repeats
in utrophin are acidic. However, the addition of up to ten canonical
repeats to the utrophin CH domains stabilised the interaction
between utrophin and actin increasing the affinity by up to 20-fold
[36]. The addition of up to two repeats to the b-spectrin actin
binding domain had a similar effect [37], but in both the case of
b-spectrin and utrophin the repeats have no intrinsic actin binding
properties alone and absolutely require the CH domains. Despite
both dystrophin and utrophin being able to interact along the
length of actin filaments through at least half of their molecular
length, the binding was not competitive, with both proteins able
to interact with F-actin simultaneously [34]. One consequence of
the binding of dystrophin or utrophin laterally on actin filaments
is to greatly increase the torsional flexibility of actin [38], a prop-
erty that could be of great functional significance for the protection
of the sarcolemma during the deformation induced by contraction
and relaxation.

4.2. Lipid Binding

Mapping of the lipid binding properties of dystrophin repeats
revealed that repeats 1–19 can bind to anionic lipids whereas
repeats 20–24 do not [39,40]. This has led to the suggestion that
dystrophin may in fact associate directly with the membrane and
for part of its repeat region lies along the membrane, reviewed in
[29]. Furthermore biophysical studies of the lipid binding repeats
1–3 and the non-lipid-binding repeats 20–24 revealed that the
interaction of repeats 1–3 with membrane lipids was largely elec-
trostatic with no modification of the helical secondary structure of
the protein [41]. This is in contrast to the interaction of repeat 14 of
b-spectrin with lipids, which undergoes significant unfolding in
order to interact with phospholipids [42]. Of the dystrophin re-
peats that do interact with lipids, repeats 11–15 are unique in that
they are able to bind to both anionic and zwitterionic lipids [40].
Interestingly repeats 11–17 have also been demonstrated to
interact with F-actin [33] (see above). A more detailed biophysical
analysis of repeats 11–15 revealed that this region is able to create
very strong protein networks at the interface of both anionic and
zwitterionic lipid membranes [43]. This confirmed the amphiphilic
nature of these repeats and their propensity to spread onto the
membrane surface dependent on the surface pressure and the lipid
packing. Given that the interaction of dystrophin is dependent on
the surface pressure of the lipid monolayer, these properties are
likely to have important biological consequences as they could
relate to the association of dystrophin with the sarcolemma during
changes in surface pressure due to the muscle contraction-
relaxation cycle.

The ability of repeats 11–15 to bind to actin and to lipid mem-
branes suggests a possible role for these associations in stabilising
the membrane. Neither dystrophin repeats 11–15 not F-actin alone
has any significant effect on the viscoelasticity of the lipid mem-
brane, however when actin and dystrophin repeats 11–15 are
added together there is a highly significant increase in membrane
stiffness that is dependent on dystrophin repeat concentration and
actin polymerisation, as well as lipid type and surface pressure
[44]. Taken together these findings present a new paradigm for
the functional role of dystrophin in protecting the membrane from
contraction-associated damage by forming a more continuous
bridge between sarcolemma and underlying cytoskeletal elements
such as actin, a role mediated by the dystrophin repeats.

4.3. nNOS

Neuronal nitric oxide synthase (nNOS) is a sarcolemma associ-
ated enzyme important for skeletal muscle vasomodulation [45].
nNOS is lost from the sarcolemma due to the loss of dystrophin
and associated proteins in Duchenne muscular dystrophy [46]. Evi-
dence from Becker muscular dystrophy patients who lack only part
of the dystrophin gene, and from the mdx mouse, a model of Duch-
enne muscular dystrophy, highlighted a requirement for the repeat
region of dystrophin [47–49]. However experiments in mdx mice
also highlight a requirement for syntrophin, one of the dystrophin
associated proteins [48], though syntrophin alone is not sufficient
to restore nNOS to the sarcolemma [49]. More detailed analysis of a
potential ternary complex between nNOS, dystrophin repeats and
syntrophin reveals a direct interaction between the PDZ domain
of nNOS an repeats 16 and 17 of dystrophin [50].
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5. Biomedical significance

A significant proportion of DMD mutations arise in the repeat
region of dystrophin, many as a consequence of deletions of one
or several exons and nonsense mutations. Recent advances in
molecular medicine now make it theoretically possible to correct
these mutation using exon-skipping strategies, see [51] for a recent
comprehensive review. However for these strategies to be success-
ful, one not only requires a knowledge of genomic structure and
protein structure but also protein function. The importance of
maintaining the phasing of the repeats in dystrophin has been rea-
lised for some time [14], however it is only more recently that the
importance of which dystrophin repeats are required for a func-
tional rescue of dystrophic muscle has become apparent, reviewed
in [29]. As an aide to basic and clinical scientists alike we have
developed an eDystrophin database devoted to the analysis and
human DMD mutations and prediction of resulting protein struc-
ture with particular emphasis on the repeat region. The eDystro-
phin database is available: http://edystrophin.genouest.org/ [52].
As is apparent from the analysis described above, the overlapping
functions of actin binding, phospholipid binding and nNOS binding
makes the restoration of dystrophin repeats 11–17 critical to the
success of any therapy.
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