L. Hoyte, W. Ye, L. Brubaker, J. R. Fielding, M. E. Lockhart et al., Segmentations of MRI images of the female pelvic floor: A study of inter- and intra-reader reliability, Journal of Magnetic Resonance Imaging, vol.86, issue.3, pp.684-691, 2011.
DOI : 10.1002/jmri.22478

G. Gerig, M. Jomier, and M. Chakos, Valmet: A New Validation Tool for Assessing and Improving 3D Object Segmentation, Proc. of MICCAI, pp.516-523, 2001.
DOI : 10.1007/3-540-45468-3_62

S. K. Warfield, K. H. Zou, and W. M. Wells, Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation, IEEE Transactions on Medical Imaging, vol.23, issue.7, pp.903-921, 2004.
DOI : 10.1109/TMI.2004.828354

C. Restif, Revisiting the Evaluation of Segmentation Results: Introducing Confidence Maps, Lecture Notes in Computer Science, vol.4792, pp.588-595, 2007.
DOI : 10.1007/978-3-540-75759-7_71

O. Commowick, V. Grégoire, and G. Malandain, Atlas-based delineation of lymph node levels in head and neck computed tomography images, Radiotherapy and Oncology, vol.87, issue.2, pp.281-289, 2008.
DOI : 10.1016/j.radonc.2008.01.018

URL : https://hal.archives-ouvertes.fr/inria-00616080

R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers, Automatic anatomical brain MRI segmentation combining label propagation and decision fusion, NeuroImage, vol.33, issue.1, pp.115-126, 2006.
DOI : 10.1016/j.neuroimage.2006.05.061

P. Aljabar, R. Heckemann, A. Hammers, J. Hajnal, and D. Rueckert, Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy, NeuroImage, vol.46, issue.3, pp.726-738, 2009.
DOI : 10.1016/j.neuroimage.2009.02.018

E. M. Van-rikxoort, I. Isgum, Y. Arzhaeva, M. Staring, S. Klein et al., Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus, Medical Image Analysis, vol.14, issue.1, pp.39-49, 2010.
DOI : 10.1016/j.media.2009.10.001

T. Rohlfing, D. B. Russakoff, C. R. Maurer, and J. , Performance-Based Classifier Combination in Atlas-Based Image Segmentation Using Expectation-Maximization Parameter Estimation, IEEE Transactions on Medical Imaging, vol.23, issue.8, pp.983-994, 2004.
DOI : 10.1109/TMI.2004.830803

X. Artaechevarria and A. Munoz-barrutia, Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data, IEEE Transactions on Medical Imaging, vol.28, issue.8, pp.1266-1277, 2009.
DOI : 10.1109/TMI.2009.2014372

I. Isgum, M. Staring, A. Rutten, M. Prokop, M. A. Viergever et al., Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Cardiac and Aortic Segmentation in CT Scans, IEEE Transactions on Medical Imaging, vol.28, issue.7, pp.1000-1010, 2009.
DOI : 10.1109/TMI.2008.2011480

M. R. Sabuncu, B. T. Yeo, B. Fischl, and P. Golland, A Generative Model for Image Segmentation Based on Label Fusion, IEEE Transactions on Medical Imaging, vol.29, issue.10, pp.1714-1729, 2010.
DOI : 10.1109/TMI.2010.2050897

S. K. Warfield, K. H. Zou, and W. M. Iii, Validation of image segmentation and expert quality with an expectationmaximization algorithm, Proceedings of the 5th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'02), Part I, ser. LNCS, pp.298-306, 2002.

S. Klein, U. Van-der-heide, I. Lips, M. Van-vulpen, M. Staring et al., Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information, Medical Physics, vol.25, issue.11, pp.1407-1417, 2008.
DOI : 10.1109/TMI.2006.880587

T. R. Langerak, U. A. Van-der-heide, A. N. Kotte, M. A. Viergever, M. Van-vulpen et al., Label Fusion in Atlas-Based Segmentation Using a Selective and Iterative Method for Performance Level Estimation (SIMPLE), IEEE Transactions on Medical Imaging, vol.29, issue.12, 2000.
DOI : 10.1109/TMI.2010.2057442

A. Dempster, N. Laird, and D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, vol.39, 1977.

G. Mclachlan and T. Krishnan, The EM Algorithm and Extensions, 1997.

O. Commowick and S. K. Warfield, Incorporating Priors on Expert Performance Parameters for Segmentation Validation and Label Fusion: A Maximum a Posteriori STAPLE, Proceedings of the 13th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'10), Part III, ser. LNCS, pp.25-32, 2010.
DOI : 10.1007/978-3-642-15711-0_4

URL : https://hal.archives-ouvertes.fr/inserm-00550016

X. Meng and D. Rubin, Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm, Journal of the American Statistical Association, vol.82, issue.416, pp.899-909, 1991.
DOI : 10.1002/9780470316696

O. Commowick and S. K. Warfield, Estimation of Inferential Uncertainty in Assessing Expert Segmentation Performance From STAPLE, IEEE Transactions on Medical Imaging, vol.29, issue.3, pp.771-780, 2010.
DOI : 10.1109/TMI.2009.2036011

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants et al., Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration, NeuroImage, vol.46, issue.3, pp.786-802, 2009.
DOI : 10.1016/j.neuroimage.2008.12.037

URL : https://hal.archives-ouvertes.fr/inserm-00360790

B. Avants, P. Yushkevich, J. Pluta, D. Minkoff, M. Korczykowski et al., The optimal template effect in hippocampus studies of diseased populations, NeuroImage, vol.49, issue.3, pp.2457-2466, 2010.
DOI : 10.1016/j.neuroimage.2009.09.062

A. Asman and B. Landman, Robust Statistical Label Fusion Through Consensus Level, Labeler Accuracy, and Truth Estimation (COLLATE), IEEE Transactions on Medical Imaging, vol.30, issue.10, pp.1779-1794, 2011.
DOI : 10.1109/TMI.2011.2147795

B. Landman, A. Asman, A. Scoggins, J. Bogovic, F. Xing et al., Robust Statistical Fusion of Image Labels, IEEE Transactions on Medical Imaging, vol.31, issue.2, pp.512-522, 2011.
DOI : 10.1109/TMI.2011.2172215

T. Rohlfing, D. Russakoff, and C. J. Maurer, Expectation Maximization Strategies for Multi-atlas Multi-label Segmentation, Information Processing in Medical Imaging (IPMI), ser. LNCS, pp.210-221, 2003.
DOI : 10.1007/978-3-540-45087-0_18

A. Asman and B. Landman, Characterizing Spatially Varying Performance to Improve Multi-atlas Multi-label Segmentation, Proceedings of Information Processing in Medical Imaging, IPMI'11, ser, 2011.
DOI : 10.1007/978-3-642-22092-0_8