Estimating A Reference Standard Segmentation with Spatially Varying Performance Parameters: Local MAP STAPLE - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Medical Imaging Year : 2012

Estimating A Reference Standard Segmentation with Spatially Varying Performance Parameters: Local MAP STAPLE

(1, 2) , (2) , (2)
1
2

Abstract

We present a new algorithm, called local MAP STAPLE, to estimate from a set of multi-label segmentations both a reference standard segmentation and spatially varying performance parameters. It is based on a sliding window technique to estimate the segmentation and the segmentation performance parameters for each input segmentation. In order to allow for optimal fusion from the small amount of data in each local region, and to account for the possibility of labels not being observed in a local region of some (or all) input segmentations, we introduce prior probabilities for the local performance parameters through a new Maximum A Posteriori formulation of STAPLE. Further, we propose an expression to compute confidence intervals in the estimated local performance parameters. We carried out several experiments with local MAP STAPLE to characterize its performance and value for local segmentation evaluation. First, with simulated segmentations with known reference standard segmentation and spatially varying performance, we show that local MAP STAPLE performs better than both STAPLE and majority voting. Then we present evaluations with data sets from clinical applications. These experiments demonstrate that spatial adaptivity in segmentation performance is an important property to capture. We compared the local MAP STAPLE segmentations to STAPLE, and to previously published fusion techniques and demonstrate the superiority of local MAP STAPLE over other state-ofthe- art algorithms.
Fichier principal
Vignette du fichier
TMI_LocalStaple_Final.pdf (1.08 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inserm-00697775 , version 1 (16-05-2012)

Identifiers

Cite

Olivier Commowick, Alireza Akhondi-Asl, Simon K. Warfield. Estimating A Reference Standard Segmentation with Spatially Varying Performance Parameters: Local MAP STAPLE. IEEE Transactions on Medical Imaging, 2012, 31 (8), pp.1593-1606. ⟨10.1109/TMI.2012.2197406⟩. ⟨inserm-00697775⟩
559 View
514 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More