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Abstract

Background: Human T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce

radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2,

highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle

of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have

identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern

the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction

profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular

pathways toward disease progression.

Results: We employ a scalable methodology for the systematic mapping and comparison of pathogen-host

protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two

independent validations through an additional protein interaction detection method and a functional

transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human

proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins,

respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the

ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway.

Conclusions: This study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for

HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of

retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.
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Background
Human T-cell lymphotropic viruses HTLV-1 and -2 are

members of Deltaretrovirus genus of the Retroviridae

family [1]. HTLV-1 induces Adult T-cell Leukemia/Lym-

phoma (ATLL) [2], an aggressive lymphoproliferative dis-

ease. HTLV-1 is also associated with tropical spastic

paraparesis (TSP) [3], a neurological degenerative syn-

drome. HTLV-2 is closely related to HTLV-1 but causes

no known overt disease [4,5]. The elaborate pathogenicity

of HTLV-1 involves establishment and reactivation of

latent stages, transcriptional activation of specific cellular

genes, and modulation of cell death and proliferation path-

ways [6]. Modulations of viral and cellular function upon

infection rely on crosstalk between the few viral encoded

proteins and specific human proteins.

HTLV genomes encode structural proteins that form

the viral core particle (Gag and Env), and enzymatic ret-

roviral proteins (reverse transcriptase, integrase and
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protease). HTLV contain a cluster of alternatively

spliced open reading frames (ORFs) that encode regula-

tory proteins (Tax-1, Rex-1, HBZ, p30, p13, and p12 for

HTLV-1 and Tax-2, Rex-2, APH-2, p28, p11 and p10

for HTLV-2).

Investigations focused on one or a few genes have iden-

tified numerous human factors interacting with HTLV

viral proteins, with the results collected in several data-

bases: VirusMINT [7] and VirHostNet [8]. Most of the

available interaction data concern the highly investigated

HTLV-1 Tax protein. Few protein-protein interactions

(PPIs) have been reported for other HTLV-1 and HTLV-2

encoded proteins. Comparative molecular biology studies

of HTLV-1 and HTLV-2 have focused primarily on the

Tax oncoproteins [9,10]. Hence, many cellular proteins

and pathways exploited by these retroviruses to induce

disease are likely still unidentified. A systematic explora-

tion of shared and distinct host-pathogen protein interac-

tion profiles for these two viruses would likely identify

novel molecular mechanisms linked to HTLV infection

and be a useful tool for understanding how HTLV-1 sub-

verts cellular pathways toward disease progression.

Our high-throughput yeast two-hybrid (HT-Y2H) tech-

nology employs well-defined collections of cloned open

reading frames to provide systematic interrogation of

potential PPIs [11-14]. HT-Y2H is amenable for investigat-

ing pathogen-host interactions [15,16]. Here, we adapted

this strategy for the systematic mapping and comparison

of pathogen-host PPIs. We report viral-host interactome

maps for HTLV-1 and -2 retroviral proteomes with the

human proteome; we compare the spectra of host targets

for HTLV proteins and raise new hypotheses regarding

the pathogenic activities of HTLV-1.

Results and discussion
Identification of HTLV - human protein interactions

To identify retroviral PPIs with the human proteome we

adapted our well-established HT-Y2H system [12,14].

Using Gateway-based ORFeome libraries encoding

HTLV-1 and HTLV-2 proteins (HTLV-1 Gag, Pol, Rex,

Tax, Env, p12, p13, p30 and HTLV-2 Gag, Pol, Rex2,

Tax2, Env and APH-2 - Additional file 1: Table S1) in a

Y2H screen against the ~12,000 proteins expressed from

Human ORFeome v3.1 [17], we identified 1028 diploid

colonies representing 286 potential interactions between

human proteins and HTLV viral proteins. These interac-

tions were independently confirmed by pairwise Y2H

retesting [12].

HTLV structural and regulatory proteins have signifi-

cant sequence or functional similarity (for example

HTLV-1 Tax and HTLV-2 Tax share 77% of sequence

similarity, and both are transcriptional activators of viral

expression). These homologous viral proteins might

share one or more interacting partners amongst the

human proteins, interactions that were not identified in

initial screens because (i) highly overlapping or similar

viral ORFs may be misidentified with BLAST, and (ii)

interactions can be missed in a single screen [12,13,18].

We retested all homologous HTLV proteins for interac-

tion with each human protein found in our initial screen

with at least one homologous viral protein. For instance,

all human proteins identified as HTLV-1 Tax interactors

were also retested against HTLV-1 and HTLV-2 Tax

and Rex proteins (Additional file 1: Table S1). This

strategy combines the advantages of pooling [14] with

individual testing, to reduce the cost and workload of

the initial screen while keeping the ability to differenti-

ate similar proteins, overcome sensitivity and specificity

issues and permits comparison of negative results. The

final data set contained 166 interactions between 10

viral proteins and 122 human proteins (Figure 1 and

Additional file 1: Table S2). Among the 166 PPIs identi-

fied 87 and 79 interactions involved HTLV-1 and

HTLV-2 -encoded proteins, respectively. Twenty-eight

out of the one hundred and twenty-two human proteins

were found to interact with both viruses (Figure 1B).

In addition to applying stringent internal controls and

retests, to eliminate artifacts of the assay [19], we verified

the quality of our HT-Y2H results by applying a binary

interactome evaluation [12]. This evaluation employs

independent protein-protein interaction assays to mea-

sure how any PPI dataset performs relative to a positive

reference set (PRS) of high confidence manually curated

interactions from the literature versus a random refer-

ence set (RRS) and position our dataset compared to

these controls [12]. We tested 158 Y2H-identified binary

interactions by mammalian protein-protein interaction

trap assay (MAPPIT) [20]. MAPPIT is a forward mam-

malian two-hybrid strategy based on the activation of

type I cytokine-signaling pathway. To perform a MAPPIT

assay, we used as bait and prey, interacting partners fused

to a STAT recruitment-deficient homodimeric cytokine

receptor or to the C-terminal STAT3 recruitment por-

tion of the gp130 receptor, respectively. Interactions

between bait and prey proteins result in a functional

cytokine receptor monitored by a STAT3-responsive pro-

moter. The verification rate of our host-pathogen interac-

tome data set by MAPPIT was 29% (40/137 testable

pairs, Additional file 1: Table S2), which compares favor-

ably to PRS detection rates [18]. As for other PPI assays

tested so far, only a fraction of verifiable interactions

detected by one PPI method will retest positive with

another [18]. Previous studies show that MAPPIT detects

about 20%-25% of PRS pairs under conditions that mini-

mize the detection of RRS pairs [18]. As a control for

specificity, a random set of 40 proteins from the human

ORFeome 3.1 was also tested by MAPPIT for their inter-

action with HTLV proteins, and only 3 out of 40 (7.5%)
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Figure 1 Pipeline of the HT-Y2H experiment. (A) Retroviral ORFeome screened against Human ORFeome 3.1 in both configurations (DB-hORF

AD-rvORF and DB-rvORF AD-hORF). Interactions found in the primary screen were subjected to homologous individual retest, where any human

interactor of HTLV 1-2 protein was also retested for interaction with all homologous HTLV l and 2 proteins. An example of homologous group

with Tax and Rex is shown. To guarantee high specificity, only interactions identified with at least two out of three reporter phenotypes were

considered positive. (B) Venn diagram of the number of human proteins targeted by each virus.
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were found positive. The MAPPIT retest rate of our

HTLV-human PPIs represents ~80-100% of the maxi-

mum number of interactions expected to be recovered by

MAPPIT, with an estimated false positive rate of 0-20%

[12,13,18].

Human proteins interacting with viral proteins appar-

ently have significantly different topological properties

compared to random proteins in the human PPI network

[15,21]. Viral proteins seem to preferentially target “hubs,”

i.e. highly connected proteins in the human-human PPI

network. Preferential targeting of hubs is also observed in

our HTLV network (Table 1). Human targets of HTLV

proteins have higher connectivity (degree k = 13.75) com-

pared to the whole network (k = 3.79), are more centrally

located as measured by higher betweenness centrality

(BC), 12443 for viral targets vs 2208 for random proteins,

and have lower characteristic path length (CPL), 3.09 for

viral targets vs. 4.38 for random proteins.

Degree, Characteristic path length (CPL) and between-

ness centrality (Betweenness) for the 131 human proteins

identified in our screen (Viral Targets), the whole human

PPI network (Whole Network), and for human proteins

interacting with 19 random human proteins (Random

Sources). P-values assess the difference between viral tar-

gets and the whole network

As previously demonstrated and again confirmed here,

our Y2H methodology delivers high quality, reproducible

biophysical interactions [12-14], but there is no guarantee

that biophysical interactions are functionally relevant

in vivo. To functionally validate our PPI dataset, we rea-

soned that some human proteins interacting with viral

transactivators are likely to influence Tax transcriptional

activities and thus contribute to viral replication and

expression of cellular genes.

Many HTLV-human interactions in our data set (106/

166) involved the retroviral transactivator proteins

HTLV-1 Tax (57/166) or HTLV-2 Tax2 (49/166). To

examine the functional consequences of these associa-

tions, HEK293T cells were cotransfected with expression

vectors for Tax-1 and Tax-interacting proteins, together

with a firefly luciferase reporter driven by the HTLV-1

LTR promoter. As determined by normalized luciferase

reporter assays, we identified 31 proteins (37% of the 83

Tax-interacting proteins) that regulated HTLV-1 LTR

promoter activation by Tax (Figure 2 and Additional file

1: Table S3). There were 8 host factors that significantly

enhanced Tax transactivation activities suggesting their

potential implication in viral replication and persistence

in infected cells. Another group of 23 cellular proteins

down-regulated HTLV-1 LTR viral promoter activation

and as such may be implicated in the viral latency

which allows viruses to escape immune surveillance

(Figure 2 and Additional file 1: Table S3). We selected

two Tax1-cellular partners, SPG21, involved in the

repression of T cell activation [22], and FANCG, a DNA

damage response activated protein [23-25], for further

validation in a T lymphocyte cell line. We used Jurkat T

cells harboring a HTLV-1 LTR luciferase reporter (Jur-

kat-LTR-Luc) to confirm potential roles of SPG21 and

FANCG in viral replication. We transduced Jurkat-LTR-

Luc cells with a control shRNA and three validated

shRNAs directed against SPG21 or FANCG and mea-

sured luciferase reporter-expression and cell viability. In

accordance with regulation of Tax-transactivation data

(Figure 2 and Additional file 1: Table S3), knockdown of

SPG21 increased HTLV-1 LTR promoter activity while

depletion of FANCG decreased HTLV-1 LTR promoter

activity (Figure 3).

In summary, we identified 166 interactions between 10

viral proteins and 122 human proteins and verified their

overall quality through an independent assay. We func-

tionally validated our dataset by showing involvement of

31 human proteins in viral transcriptional regulation.

Analysis of the HTLV-1 and-2 interactome maps

Our standardized experimental conditions, which combine

stringent, high-throughput Y2H for a defined search space

with systematic retesting of all homologous proteins, per-

mit comparisons between interacting protein pairs. Net-

work views of our data identify shared and distinct PPIs

between HTLV-1 and HTLV-2. (Figure 2).

We found 34 human proteins that bind HTLV-1 Tax

protein, but not the HTLV-2 Tax homolog (Figure 2 and

Additional file 1: Table S4). Consistent with its intrinsi-

cally disordered conformation and pleiotropic activities

[26], specific HTLV-1 Tax interactors include proteins

associated with a range of distinct cellular functions such

as transcription regulation (ETV4, RFX4, MyEF2,

ZNHIT4, ZMAT1 and HOXB9), cell apoptosis (TRIP6

and CRADD), protein degradation (WDFY3 and

PSMA1), and microtubule cytoskeleton (KIF9, KRT6A

and KTR8).

We also found 26 HTLV-2 Tax interactors that did not

interact with HTLV-1 Tax, including cell cycle proteins

(Cep70, MAD1L1 and SSX2IP), transcription factors

(NFKB activating protein, ZBTB16 and SOX5) and pro-

teins involved in the endosomal-lysosomal system

(AP4M1 and GCC1) (Figure 2 and Additional file 1:

Table 1 Topological features of viral targets

Viral
Targets

Whole
Network

P-value Random
Sources

Degree 13.75 3.79 2.53E-
14

13.93

CPL 3.09 4.38 < 1E-
320

3.07

Betweenness 12443 2208 6.14E-
14

12646
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Table S4). Considering the differential oncogenic poten-

tial of the two HTLV viruses [9] and the central roles of

their Tax proteins, these PPIs could shed light on

mechanisms of cellular transformation by the Tax

oncoprotein.

We have identified 10 novel HBZ binding proteins (Fig-

ure 2) including the homeobox transcription factor

HOXD3; two RNA binding proteins, PCBP1 involved in

restricting viral infections [27] and RNPS1, that can induce

genomic instability when overexpressed [28]. Consistent

with its association with transcriptional repression, we also

found that HBZ interacts with MYST2, a member of the

largest family of histone acetyltransferase enzymes, impli-

cated in the regulation of DNA synthesis [29]. We also

identified 8 novel APH-2 interactors (Figure 2 and Addi-

tional file 1: Table S2) including USF2, a member of the

basic helix-loop-helix (bHLH) leucine zipper family of

transcription factors that may play a role in late viral

mRNA transcription [30]; VPS37A, a subunit of the mam-

malian endosomal sorting complex ESCRT-1 that have

been shown to play a role in HIV-1 budding [31]; and

NP54, a member of the nucleoporin complex that have

been shown to bind HIV-1 Vpr and to play a critical role

in the nucleocytoplasmic transport of viral preintegration
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complex [32]. Interestingly, we did not find any common

interactor between HBZ and APH-2. The functions of

these new HBZ and APH-2 associations with cellular fac-

tors remain to be further characterized.

Comparison with known data

Databases dedicated to virus-host PPIs (VirHostNet and

VirusMint) contain only few PPI related to HTLV

viruses. We thus manually curated the literature and

found that most of host factors, which have been

demonstrated to interact with HTLV proteins, concern

the highly investigated HTLV-1 Tax (122/147) (Addi-

tional file 1: Table S5). The overlap between our study

and known data is sparse (3 proteins: Nup62, MAD1L1

and Cdc23 - Figure 4A), not surprising given the use of

dissimilar methods, clones, and search spaces. We inte-

grated our dataset with current literature data on known

human-HTLV PPIs and highlighted host factors inter-

acting with at least two different viral proteins (Figure

4B). As examples, HTLV-1 HBZ, Tax and HTLV-2

APH-2 interact with CREB. Both HTLV-1 HBZ and Tax

proteins interact with AP-1, CBP/p300, CREB, ATF and

p65 NF�B transcription factors. However, interaction

with these host factors drives opposite effects, as HBZ

and APH-2 are involved in the repression of HTLV-

transcription and are always expressed in leukemic cells

[33,34].

Enrichment of viral targets for biological pathways

The immediate human targets of HTLV proteins found

here were not significantly enriched for annotated path-

ways in the Kyoto Encyclopedia of Genes and Genomes

(KEGG) [35], i.e. the number of proteins belonging to a

specific pathways is not significantly higher than random

expectation, probably because of the limited number of

human targets. To improve sensitivity, we also analyzed

second-degree interactors, those human proteins in the

human-human PPI network [14] that interact with

human targets of viral proteins. Proteins associated with

apoptotic pathways, Notch signaling, cell cycle, ubiquitin

mediated proteolysis, as well as proteins involved in sev-

eral human cancers including chronic myeloid leukemia,

were overrepresented compared to random expectation

(Table 2).
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For each enriched KEGG pathway is given the pathway

identifier in the KEGG database (Pathway ID), the num-

ber of observed proteins belonging to the considered

pathway (Observed), the number of proteins in the path-

way expected at random (Random), the ratio between the

number of observed proteins and the expected number

(Odds Ratio), the false discovery rate (FDR), and the cor-

rected FDR (FDR-Corr)

Apoptotic pathway

In an apoptotic pathway sub-network, KEGG analysis

highlighted the tumor necrosis factor (TNF) receptor and

the AKT/PI3K signaling pathways as potential targets for

HTLV proteins. In this network HTLV Tax and Rex pro-

teins are closely linked to the Akt/PI3K and mitochon-

drial apoptotic pathways. We identified interactions

between HTLV Tax proteins and nitric oxide synthase 3

(NOS3), hepatocyte growth factor-regulated tyrosine

kinase substrate (HGS), Ewing sarcoma breakpoint

region 1 (EWSR1) and glucose transporter-4 (SLC2A4)

proteins. KEGG analysis indicated that phosphatidylino-

sitol-3-kinase (PI3K), BCL2-antagonist of cell death

(Bad), and DNA fragmentation factor alpha (DFFA) pro-

teins are second-degree targets of HTLV Tax proteins

(Figure 5). We also found that the HTLV Rex proteins

interact with DLC2 (for dynein light chain 2), able to reg-

ulate cell death-inducing functions of pro-apoptotic pro-

teins Bim (Bcl-2-interacting mediator of cell death) and

Bmf (Bcl-2-modifying factor). HTLV Rex proteins are

nuclear-localizing proteins well known to drive post-

transcriptional export of viral mRNAs from the nucleus

to the cytoplasm [36-38]. Besides its interaction with the

cellular export factor CRM1 [39], functional relationship

between Rex proteins and their cellular partners have not

been fully investigated. Interaction between Rex proteins

and DLC2 may shed light on a new role of Rex in the

apoptotic pathway. To assess the subcellular localization

of Rex1 and DLC2, we transfected HeLa cells with

expression vectors for Rex1-GFP and Flag-tagged DLC2.

Cells were stained by anti-flag antibody followed by

Alexa546-conjugated secondary antibody and a far-red

fluorescent DNA dye (DRAQ5) for nuclear staining.

Consistent with previous reports [40-42], DLC2 was

found exclusively in the cytoplasm (Figure 6A, DLC2);

and Rex-GFP was localized in nucleolar foci (Figure 6A,

Rex1-GFP). Co-expression of Rex1-GFP and Flag-DLC2

provoked a change in the localization of DLC2 with two

patterns being observed. DLC2 was localized in the cyto-

plasm as well as in nuclear foci (Figure 6A, DLC2 +

Rex1-GFP, Alexa546). It thus appeared that coexpression

with Rex1 directs DLC2 in nucleolar foci as revealed by

the good match of the green (Rex1-GFP) and orange

(Flag-DLC2) fluorochromes. We conclude that HTLV

Rex proteins might interfere with the anti-apoptotic

activities of DLC2 in HTLV infected cells.

We also identified TNF receptor-associated factor type 2

(TRAF-2) as a central protein mediating interactions

between HTLV proteins, TNF receptor (TNFR) signaling,

and the Akt/PI3K survival pathway (Figure 5). We found

that TRAF2 directly binds HTLV-2 Gag and is also a sec-

ond-degree interactor of HTLV Tax and Rex proteins.

Depending on its interacting partners, TRAF2 signals

drive contradictory cellular responses. Direct binding to

the cytoplasmic domain of TNFR2, which does not con-

tain a death domain, can trigger NF�B and JNK activation,

but TRAF2 also indirectly mediates the signal from a

death domain containing receptors such as TNFR1 via

interaction with FADD and TRADD pro-caspases adaptor

factors [43]. Retroviral infection is frequently associated

with elevated TNFa, and cell lines derived from ATL

patients show sensitivity to TNF-related apoptosis [44].

Gag protein could target TRAF2 for proteasomal

Table 2 KEGG pathways enriched in secondary viral interactors

Pathway Name Pathway ID Observed Random Odds Ratio FDR FDR-Corr

Apoptosis hsa04210 6 1.82 3.31 1.3E-04 1.9E-02

Cell cycle hsa04110 10 2.87 3.48 3.6E-04 4.8E-02

Chronic myeloid leukemia hsa05220 8 1.59 5.03 2.1E-05 3.2E-03

Colorectal cancer hsa05210 7 2.13 3.28 9.3E-05 1.4E-02

ErbB signaling pathway hsa04012 7 1.67 4.19 6.3E-05 9.5E-03

Glioma hsa05214 7 0.76 9.26 6.2E-05 9.3E-03

Huntington’s disease hsa05040 6 0.34 17.41 < 2.5E-06 < 3.8E-04

Insulin signaling pathway hsa04910 10 2.06 4.86 1.2E-04 1.8E-02

Melanoma hsa05218 4 0.64 6.27 1.4E-04 2.0E-02

Notch signaling pathway hsa04330 4 1.82 2.20 < 2.5E-06 < 3.8E-04

Olfactory transduction hsa04740 4 0.16 25.66 < 2.5E-06 < 3.8E-04

Prostate cancer hsa05215 5 1.04 4.79 2.9E-04 4.3E-02

Ubiquitin mediated proteolysis hsa04120 10 3.02 3.31 2.0E-04 2.9E-02
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degradation, thereby facilitating sensitivity to TNFa-

induced cell death. To investigate this possibility we co-

expressed GFP tagged HTLV-2 Gag, Flag tagged TRAF2

and a Myc-Ubiquitin expressing vectors. The presence of

HTLV-2 Gag reduced TRAF2 protein levels (Figure 7A,

aFlag compare lanes 1 and 2; and lanes 3 and 4), and

degradation of TRAF2 correlated with a reduction of

Myc-ubiquitylated proteins (Figure 7A, aMyc compare

lanes 3 and 4) suggesting that the TRAF2-E3 ubiquitin

ligase activity was also affected by the presence of HTLV-2

Gag protein. The degradation of TRAF2 could be blocked

by preincubating cells with proteasome inhibitor MG132

(Figure 7B). Together these data indicate that HTLV-2

Gag induces proteasomal degradation of TRAF2.

Cell cycle

Cell cycle is a tightly regulated cellular process targeted

by transforming viruses to modulate cell division and

proliferation. HTLV-1 Tax has been shown to bind cell

cycle key regulators including cyclins-D1, D2 and D3,

cyclin-dependent kinases (CDK) 4 and 6; and CDK inhi-

bitor p16INK4a, to influence T lymphocyte G1-S pro-

gression [45-47]. HTLV-1 Tax also interacts with DNA

repair and checkpoint proteins including checkpoint

kinases (Chk) 1 and 2 and members of the mitotic spin-

dle-assembly checkpoint (MAD1L1, MAD2L1 and

MAD2L2) [48] (Figure 8). Common features in cell

cycle regulation between HTLV-1 and -2 Tax proteins

shown here, include their direct interaction with the
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MAD complex and with the anaphase-promoting com-

plex or cyclosome (APC/C) via Cdc23 protein; and their

indirect connection to similar cell cycle proteins such as

Cdc27, Cdc2, PCNA and SMADs proteins (Figure 8).

One difference highlighted here is the interaction of

HTLV-1 Tax, and not HTLV-2 Tax, with the 26 protea-

some subunit PSMA1, which could link HTLV-1 Tax to

the minichromosome maintenance complex (MCM), the

polo-like kinases (Plk) or the CDK-activating kinase

complex (CCNH) (Figure 8). All these newly identified

interactions should be validated in appropriate cell lines

such as human hematopoietic stem cells (HSCs) pre-

viously used to demonstrate differences between Tax1

and 2 in cell cycle arrest in G0/G1 [9,49].

DRAQ5 GFP Alexa546 Merged

DLC2

Rex1-GFP

DLC2

+

Rex1-GFP

B

A

Figure 6 HTLV-1 Rex and DLC2 co-localize in nucleolar foci. (A) HeLa cells were transfected with expression vectors for Rex1-GFP and Flag-

DLC2 as indicated. Twenty-four hours post-transfection, cells were labeled with anti-flag M2 mouse antibody followed by alexa546-conjugated

anti-mouse secondary antibody. Cells were stained with the far-red DNA marker DRAQ5 and analyzed by confocal microscopy. Merge

corresponds to the simultaneous acquisition of all three fluorochromes. (B) Fluorescent intensities were plotted along the red line segments. The

green and orange lines in the profile correspond to the relative intensities of GFP and Alexa 546.
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Ubiquitin-mediated proteolysis pathway

We identified cellular E2 ubiquitin-conjugating enzymes

UBE2I and UBE2N or UBC13; and E3 SUMO-protein

ligases PIAS (protein inhibitor of activated STAT) 1, 2

and 4. Both types of enzymes have been previously

shown to play a role in Tax-mediated NF-kB activation

[50,51]. KEGG analysis also highlighted E3 ubiquitin

ligases (CDC23, TRAF2 and TRAF6), which interact

with HTLV proteins and which may play important

roles in induced perturbations of the proteasomal path-

way. CDC23 is a member of the anaphase promoting

complex/cyclosome (APC/C, including CDC23), an E3

ubiquitin ligase that controls metaphase to anaphase

transition [52-54]. TRAF proteins contain a RING finger

domain, a domain that can simultaneously bind ubiqui-

tination enzymes and their substrates [55,56] (Figure 9).

HTLV-1 Tax might also provide a bridge to the protea-

some by disrupting the interaction between an E3 ubi-

quitin ligase and its substrate, illustrated by the

inactivation by Tax of the A20-Itch E3 ligase complex,

potentially leading to a permanent activation of tumor

necrosis factor (TNF) receptor (TNFR) signaling [57].
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Most eukaryotic cellular proteins are selectively

degraded by the ubiquitin-proteasome system [58].

Numerous infectious and cancer agents induce aberra-

tions in the proteasomal pathway, and several inhibitors

have been proposed as promising therapies [59-62].

Effective therapy faces challenges, as the activity of the

proteasome is subjected to multiple regulation, and the

selection of precise targeted proteins involves highly

specific E2 and E3 ubiquitin enzymes [63].

Notch pathway

The highly conserved Notch signaling pathway regulates

diverse cell fate decisions, including differentiation, prolif-

eration, communication and specification. Several mem-

bers of the Notch signaling pathway, including Numb [64],

dishevelled (Dvl) proteins [65], cAMP-response element-

binding protein (CREB)-binding protein (CREBBP or

CBP) [66,67], and p300 [68], are targeted by HTLV Tax,

Rex, Hbz, Gag and Pol proteins (Figure 10). It has been

recently shown that the g-secretase inhibitor (GSI)

reduced tumor cell proliferation and tumor formation in

an Adult T-cell Leukemia animal model [69]. To directly

assess the involvement of the Notch pathway in viral infec-

tion, we treated an HTLV-1 transformed cell line (MT4)

with a g-secretase inhibitor (GSI) (L-685,458) [70] and

tested whether inhibition of the Notch pathway could

affect HTLV-1 expression in MT4 cell line. Interestingly,

we showed by quantitative RT-PCR, that inhibition of the

Notch pathway significantly lowered HTLV-1 HBZ (p <

2.1E-5), Gag (p < 0.04) and Tax1 (p < 0.003) expression in

MT4 cells (Figure 10B), suggesting that GSI could be a

new class of retroviral replication inhibitors.

Conclusion
HTLV-1 and HTLV-2 are closely related human deltare-

troviruses that have a similar genomic organization and

HOXB9

CREBBP

EP300

SMAD3

HGS

HDAC1

SMAD2

CDC27

SMAD4

CDC23

EWSR1

MCM6

MAD1L1

MAD2L1

PSMA1

PLK1

NEFL

HTLV1

tax

CCNH

ETV4

MAD2L2

GADD45B

RB1

CDC2

GADD45GIP1

PCNA

ZBTB16

GADD45G

GADD45A

HTLV2

tax2

POLM

SFN

C8orf32

YWHAG

YWHAQNIF3L1

Figure 8 Targeting of the cell cycle by viral proteins. Schematic representation of PPIs. Big diamonds: viral ORFs, with HTLV-1 and HTLV-2 in

blue and light blue, respectively. Small circles: human ORFs with green representing membership of the cell cycle. Grey links: human-human

PPIs; blue links: virus-human PPIs.

Simonis et al. Retrovirology 2012, 9:26

http://www.retrovirology.com/content/9/1/26

Page 12 of 20



share a high degree of sequence homology. Both viruses

are able to immortalize T lymphocytes in vitro. In con-

trast to HTLV-1, HTLV-2 has not been conclusively

associated with any known human disease. Most com-

parative studies to identify molecular differences

between HTLV-1 and -2 are based on literature data on

the viral encoded oncoproteins Tax-1 and Tax-2 activ-

ities (reviewed in [9,10])

Several global analyses of virus-host protein-protein

interaction networks have led to interesting hypotheses

about network topological properties and about shared

target human proteins and pathways [8,21]. Such statis-

tical analyses were done on collections of literature-

curated information and thus are biased in several ways.

Given an inherent ‘inspection bias’ some proteins are

more heavily studied than others, with selection biased

towards ‘interesting’ processes, diseases or potential

applications, leading to a non-homogeneous representa-

tion of different viruses and proteins. Moreover, collec-

tions from public databases are constituted of a

heterogeneous assortment of different assays, clones,

variants, experimental conditions, or inferences. Com-

paring data obtained from different experiments severely

limits the applicability of statistical analysis.

Here, we identified by a systematic stringent high-

throughput methodology, cellular interacting partners
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for HTLV-1 Tax, Rex, Env and HBZ; and for HTLV-2

Tax, Rex, Env, Pol, Gag, and APH-2 (Figure 2 and Addi-

tional file 1: Table S2), providing the first attempt at a

large scale comparative analysis of HTLV-1 and -2 host

factors interactome with homogenous data. Although

our data show several differences between HTLV-1 and

-2 at the level of individual interactions with cellular tar-

gets, the findings do not show that they target distinct

pathways. Cellular factors interacting with HTLV-1 and

HTLV-2 seem to be involved in similar pathways

(Apoptosis, Notch signaling, cell cycle, ubiquitin

mediated proteolysis,...), but in different ways (Table 2

and Figures 5, 6, 7, 8, 9 and 10). This study identified

many new host factors, raises new hypotheses and

demonstrates the usefulness of the approach by experi-

mental validation of some specific examples; but the

incompleteness of the data does not allow us to build

predictive models. Interactome maps presented here are

incomplete for at least three reasons. First, the human

ORFeome v3.1 collection we used covers only ~50% of

the human proteome and does not include variants. Sec-

ond, yeast two-hybrid, like any PPI assay, captures only

a portion of protein-protein interactions [18]. Third,

interactome screens are rarely conducted to saturation,

i.e. yielding all possible interactions under the given

conditions. To identify most physical interactions and to

be able to build comprehensive systems biology models

would require combining several assays, with each assay

conducted to saturation, using the most complete col-

lection of clones, including variants, and under a wide

range of experimental conditions. In addition, all inter-

actions should be functionally validated, localized and

their dynamics studied. Current efforts to map protein-

protein interactions should hopefully lead to near com-

plete maps for several organisms in the future.

In conclusion, our experimental identification of 166

PPIs involving 10 HTLV-1 and -2 retroviral proteins

with 122 human proteins extends and complements

existing data on human-viral protein interactions

[8,15,16,21,71,72].

We also identify and discuss common and distinct host

cellular proteins targeted by HTLV-1 and -2 in relations

with several cellular pathways, and we present innovative

targets for further investigation of HTLV-induced net-

work perturbations and illustrate the usefulness of this

dataset by further investigation of Rex-DLC2, TRAF2-

Gag and the involvement of the Notch pathway.

Availability of supporting data
All protein-protein interaction data were submitted to

VirHostNet http://pbildb1.univ-lyon1.fr/virhostnet.

Interactions resulting from this study are provided in

MIMIX specifications http://mibbi.org/index.php/Pro-

jects/MIMIx in Additional file 2.

Methods
Cloning of HTLV-1 and HTLV-2 ORFeomes

HTLV-1 and HTLV-2 ORFeomes were cloned by Gateway

recombination methodology (Invitrogen) using as PCR

templates the following DNA clones obtained through the

AIDS Research and Reference Reagent Program, Division

of AIDS, NIAID, NIH: MT-2, ATK, pH6 B 3.5 and pH6 B

5.0. DNA clones MT-2 [73], ATK [74], pH6 B 3.5 and

pH6 B 5.0 from Dr. Irvin Chen [75,76]. Clones pcDNA-

SP1 was obtained from Dr. Mesnard [77], Rex1-GFP from

Dr. Bex [42] pSG5-APH2 from Dr. Mahieux [34], PcDNA-

1-Tax1 from Dr. Bex [78] and BC20.2 from Dr. Green

[79]. The specific primers for each ORF contained AttB1.1

and AttB2.1 Gateway recombination sites forward

5’GGGGACAACTTTGTACAAAAAAGTTGGC and

reverse 5’GAGAGTTAGTGGCCCGCAGGTCGGGGGA,

allowing recombinational cloning into the spectinomycin

resistant donor vector pDONR223 by BP clonase

(Invitrogen).

All full-length and partial retroviral ORFs (rvORFs)

were transferred by LR cloning into pDB-dest and pAD-

dest-CYH [19] to generate yeast expression vectors for

DB-rvORF and AD-rvORF fusion proteins. The rvORFs

were also transferred into Gateway MAPPIT vectors for

the expression of chimeric bait and prey in mammalian

cells [20]. For other functional assays, the human ORFs

encoding proteins identified in Y2H experiments were

transferred from their corresponding entry clones into

pDEST-Flag destination vectors [80].

High-throughput yeast two-hybrid

AD-rvORF and DB-rvORF yeast expressing vectors were

transformed into two different MATa and MATa strains

of yeast, respectively: MaV103 and Y8800 for all AD-ORFs

and MaV203 and Y8930 for all DB-ORFs. Transformed

yeast cells were spotted on solid synthetic complete (Sc)

media lacking tryptophan (Sc-T) to select for AD-rvORF

clones, or lacking leucine (Sc-L) to select for DB-rvORF

clones. Growing colonies were cultured in liquid Sc-L or

Sc-T media and stored in glycerol for subsequent use. To

eliminate autoactivator baits that activate reporter genes in

the absence of AD plasmids, all DB-ORFs in Mav203

strain or Y8930 were individually tested for auto-activation

by growth on solid SC-L-H medium containing 20 mM

(Mav103 strain) or 2 mM (Y8930 strain) 3-amino-triazole

(3-AT). Aliquots of AD-rvORF transformed yeast were

pooled to generate the AD-rvORF library.

Yeast two-hybrid screening was as described [14].

Yeast matings were performed with Mav103 and

MaV203 or with Y880 and Y8930. Each of 12,212 DB-

ORFs MATa yeast strains of the human ORFeome ver-

sion 3.1 [17] was mated with a pool of MATa yeast

strains containing individual retroviral AD-rvORFs. The

screen was also done in the reciprocal orientation,
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mating individual retroviral DB-rvORF yeast clones with

the 12,212 human AD-ORFs pooled into 65 mini-

libraries [14]. Diploid cells were selected on solid media

Sc-L-T-H (containing 20 mM 3-AT for the MaV strain),

and de novo autoactivators were eliminated using the

counter-selectable marker CYH2 [19]. Positive colonies

were picked for PCR amplification and identification of

interacting proteins by sequencing of the respective AD-

and DB-ORFs.

Each human protein found to interact with viral pro-

teins was individually retested against all homologous

proteins in the HTLV viruses. To this end, we mated

MATa (Mav203 or Y8930) and MATa (Mav103 or

Y8800) yeast cells containing individual DB and AD

fused to interacting human and retroviral ORF, respec-

tively. Resulting diploid cells were tested for activation

of multiple reporter genes [14].

MAPPIT assay

The mammalian protein-protein interaction trap (MAP-

PIT) [20] fuses a bait to a STAT recruitment-deficient,

homodimeric cytokine receptor, while the prey is coupled

to the C-terminal STAT recruitment portion of the

gp130 receptor. HEK293T cells maintained in DMEM

medium supplemented with 10% of fetal bovine serum,

2 mM glutamine, 100 U/ml of penicillin and streptomy-

cin were cotransfected with a STAT-responsive luciferase

reporter, the bait, and the prey or control constructs.

Twenty-four hours post-transfection, cells were stimu-

lated with erythropoietin or left untreated for an addi-

tional 24 hours. Luciferase activity was measured from

two independent transfection experiments in triplicate.

Each interaction pair was tested in both orientations. The

“Experiment to Control Ratio” (ECR) was computed as

the ratio of “bait + prey” (BP) signal over “bait + irrele-

vant prey” (BIP) or “prey + irrelevant bait” (PIB) signals.

To account for the variability of the raw data, Fieller’s

confidence interval at 95% for the ratios BP/BIP and BP/

PIB was computed from the raw induction values. Het-

erogeneous variances were assumed, using the test by

Tamhane and Logan, inverted according to Fieller’s theo-

rem [81,82]. This test was run with the R statistical pack-

age ‘pairwiseCI’. For a trial to be considered positive, the

lower bound of the ECR confidence interval has to be >

= 3 for both BP/BIP and BP/PIB ratios.

Transactivation assay

The plasmid pHTLV1LTR-Luc, containing a luciferase

reporter gene under the control of the HTLV-1 LTR

promoter, a renilla luciferase control vector, and plas-

mids expressing HTLV-1 Tax and each human ORF

found to interact with these viral proteins, were co-

transfected into HEK293T cells by the calcium phos-

phate method. The LTR luciferase construct was

obtained by subcloning HTLV-1 LTR promoter (a gift

from F. Bex [78]) into pGL3-basic vector (promega).

Twenty-four hours post-transfection, cells were washed

three times with PBS, lysed, and relative luciferase activ-

ities determined from two independent transfection

experiments in triplicate. We computed a paired t-test

to assess the difference of the means between samples

with and without the human interactor. For a trial to

be considered positive, the relative luciferase activities

have to be > = 2 or < = 0.5, and the p-value of the

t-test < 0.05.

Effect of SPG21 and FANCG knockdown on viral promoter

activation

HTLV-1 LTR promoter fused to firefly luciferase was

transduced into Jurkat cells using the pREP10 vector (Invi-

trogen). Selection with hygromycin B (100 μg/ml) was

employed to obtain stable transfectants (Jurkat-LTR-Luc

cells). Lentiviral particles expressing a control shRNA and

validated shRNA targeting various sequences of the

SPG21 and FANCG mRNAs [83] were prepared as

described [84]. shRNAs were obtained from Sigma

(TRCN0000300854, TRCN0000304152, TRCN000

0304153, TRCN0000082858, TRCN0000082859, TRCN00

00082860, TRC1). Infected Jurkat-LTR-Luc cells were

selected using puromycin (10 μg/ml). Jurkat-LTR -Luc

cells stably expressing shRNA for SPG21 (Jurkat-LTR-

shSPG21_1 to 3 and Jurkat-LTR-FANCG_1 to 3) and con-

trol cells (Jurkat-LTR-luc expressing a sh control) were

cultured for 24 hours, and luciferase activities were mea-

sured. An aliquot was used to assess cell viability using a

WST1 kit as described by the manufacturer (Roche).

Differences of expression were assessed with one-tailed

Student’s t-test on triplicate experiments.

Topological analysis

We computed the mean degree, characteristic path

length (CPL) and betweenness centrality in an unbiased

human-human PPI network [14] for the 131 human

proteins identified in the HT-Y2H screen. The CPL of a

node (protein) is the mean of the shortest paths from all

nodes to the considered node in the network. We used

Mann-Whitney U-test to compare the degree, CPL and

betweenness distributions of the 131 viral targets to the

whole network.

KEGG pathway analysis

Definitions of pathways came from the KEGG database

(September 2008). We used Fisher’s Exact Test to deter-

mine pathway enrichment of direct targets of viral pro-

teins. To evaluate the significance of indirect targets

enrichment, we ran 100,000 simulations where we rando-

mized the identity of the direct targets. The interactors of

these targets were identified in the unbiased PPI network
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[14]; interactors belonging to each pathway counted; and

the resulting distribution compared to the observed

counts. An empirical False Discovery Rate (FDR) deter-

mined the significance of the enrichment, with the FDR

computed as the proportion of random trials giving at

least the observed number of indirect targets in the con-

sidered pathway. The FDR was corrected for multiple

testing using the Bonferroni correction. Pathways with a

FDR Corr < 0.05 and at least four observed proteins were

taken as significant.

To avoid study bias inherent to literature curation, we

used the CCSB-HI1 network [14] to compute the enrich-

ment of indirect targets for KEGG pathways. The plotted

networks (Figures 5, 8, 9 and 10) were built from a litera-

ture-curated interaction (LCI) network to show the most

complete information. The LCI network is the union of

human PPIs from BIND [85], DIP [86], HPRD [87],

INTACT [88], and MINT [89] interaction databases

(April 2007).

To construct sub-networks (Figures 5, 8, 9 and 10) for

each pathway, direct targets of viral proteins belonging to

the corresponding KEGG pathway, and direct targets

linked to viral proteins were selected as “seeds”. Interac-

tors of these seeds in the human-human LCI network and

belonging to the considered pathway were then selected as

indirect targets, and all interactions between seeds and

indirects targets were plotted, along with our virus-human

PPI network. All network figures were constructed with

Cytoscape [90].

Co-expression of TRAF2 and gag

HEK293T cells were cultured in a humidified atmo-

sphere with 5% CO2 at 37°C in DMEM supplement

with 10% of fetal bovine serum and antibiotics.

HEK293T cells were transfected using the calcium phos-

phate method [91]. In some cases, cells were pretreated

with proteasomal inhibitor MG132 for 24 hr; washed in

ice-cold PBS and lysed in IPLS buffer (1% NP-40, 10%

glycerol, 120 mM NaCl, 20 mM Tris pH 7.5, 2 mM

EDTA, and complete protease inhibitor cocktail

(Roche)). Cell lysates were analyzed by Western blot

using an anti-Flag M2 (Sigma), anti-GFP (abcam) or

anti-Myc (Santa Cruz Biotechnology) antibodies.

Confocal microscopy

HeLa cells were transfected with expression vectors for

Rex1-GFP and Flag tagged DLC2 using Lipofectamine

2000 according to the manufacturer instructions (Invitro-

gen). Twenty four hours post-transfection, cells were

fixed in 4% formaldehyde (20 minutes at room tempera-

ture), permeabilized with 0.5% triton X-100, and incu-

bated with anti Flag M2 antibody (Sigma) followed by

Alexa546 -coupled anti-mouse secondary antibody (Invi-

trogen). After nuclear staining with DRAQ5 (Invitrogen),

and fixing with mounting medium (fluoromount, Sigma),

cells were analyzed using a Zeiss fluorescence confocal

microscope (Carl Zeiss Microscopy).

Inhibition of notch signaling

HTLV-1 transformed cell line (MT4) from Dr. Douglas

Richman [92] was obtained through the AIDS Research

and Reference Reagent Program, Division of AIDS,

NIAID, NIH. MT4 cells were cultured in RPMI supple-

mented with 10% fetal bovine serum and antibiotics.

MT-4 cells were treated for 48 hours with or without g-

secretase inhibitor (L-685,458) [70] at 1 μM. Total

RNAs were then isolated by Trizol method, subjected to

DNase treatment and cDNAs synthesized using the

RevertAid First Strand cDNA Synthesis kit according to

the manufacturer instructions (Fermentas). Quantitative

real-time PCR for GAPDH, HBZ, Gag and Tax expres-

sion was on a StepOne instrument (Applied Biosystem)

using SYBR green dye (Eurogentec). Viral mRNA

expression data are calculated relative to GAPDH

mRNA expression data as 2^(CT(GAPDH)-CT(HBZ/

Gag/Tax)) over three times triplicate experiments for

each gene, and differences were assessed through one-

tailed Student’s t-test.

Additional material

Additional file 1: Table S1. List of viral ORFs. Table S2. experimental

results. Table S3. Host factors regulating HTLV-1 LTR promoter activation

by Tax. Table S4. Human proteins interacting with Tax viral proteins.

Table S5. List of HTLV-1 and -2 host factors extracted from public

database (Virhosnet) or literature search. Table S6. Viral targets degrees

HTLV_human_PPIs_MIMiX.txt PPIs experimental results - MIMiX standard.

Additional file 2: PPIs experimental results in MIMiX standard

specifications.
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