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Highlights 

The effects of busulfan on the gonadal development were investigated in anuran amphibians. 

The tadpoles treated with busulfan did not display sex reversal signs. The complete germ cell 

loss was observed in X. laevis. Germ cells are not necessary for the testis formation but are 

crucial during ovarian development. 
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Abstract 

The aim of this paper was to investigate the effects of germ cell depletion on the 

sexual differentiation of gonads in five anuran species. We used busulfan to eliminate the 

germ cells. Our results indicate that germ cells are not required for gonadal ridge 

formation or the development of the undifferentiated gonads. We observed a gradual 

degeneration of gonads in studied species and the transdifferentiation of the whole 

gonads into large fat bodies in Xenopus laevis. In the latter the sexual differentiation of 

gonads or seminiferous tubules were  not impaired in the absence of  germ cells. Thus, 

the X. laevis may serve as a model to study the human Del Castillo syndrome. Our study 

shows that in anuran amphibians the germ cells are not necessary for the formation of the 

testis, but they are crucial for  development of the ovaries and are required for the  

maintenance of the gonadal structure. 
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1. Introduction 

Busulfan is an alkylating antineoplastic compound used as a common 

chemotherapeutic agent [1]. In the intracellular environment, products of busulfan 

degradation bind the guanine bases of DNA and cause guanine-adenine intrastrand 

crosslinking [2]. Such damage cannot be repaired and the affected cells undergo 

apoptosis, which may exert a teratogenic effect on the organism. Already in 1953, Bollag 

showed that the intraperitoneal administration of busulfan in rat caused germ cell 

depletion [3]. Later, similar results were obtained in chicken and quail [4-6]. This 

property is a serious drawback for busulfan use for human chemotherapy, where it causes 

gonadal failure resulting in a lack of sexual development and infertility [7]. 

Gonads are unique organs because they are not necessary for somatic life but are 

crucial for reproduction and gene transfer from one generation to another. Embryonic 

gonads are composed of somatic cells (epithelial and mesenchymal cells) as well as germ 

cells that later give rise to the oocytes or spermatozoa. During embryogenesis, the germ 

cells originate as the primordial germ cells (PGS) in the regions distant from the 

embryonic gonads and then migrate towards genital ridges [8,9]. During migration, PGCs 

divide and for this reason they are very sensitive to the toxins such as busulfan [10,11]. In 

Xenopus embryo the PGCs are localized in the endoderm and afterwards actively migrate 

from the gut region through the dorsal mesentery to the genital ridges [8].  

The sexually undifferentiated gonads are composed of a cortex and medulla. The 

germ cells are incorporated into the cortex [12]. During ovarian development, female 

germ cells (oogonia) remain in the cortex where they become enclosed by follicular cells. 

During development of the testes the basal laminae between the cortex and medulla 
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disintegrate and germ cells translocate into the medulla. The testis cords are formed 

within the central part of the gonad and are composed of Sertoli cells that enclose the 

germ cells (spermatogonia). The testis cords are rudiments of seminiferous tubules, 

within which spermatogenesis proceeds after the metamorphosis [13]. 

Several studies have examined gonadal development after germ cell depletion in 

various vertebrates [14-16]. In the zebrafish, ablation of germ cells caused 

transdifferentiation of the female gonad into the testis [15]. Similar female-to-male sex 

reversal has been observed in sterile mammals. The precursors of ovarian follicular cells 

transdifferentiate into clusters of Sertoli cells that form testis cord-like structures [17-19]. 

On the other hand, the testicular development is not affected in the absence of germ cells 

and sterile seminiferous tubules are formed [14]. In birds such as quail, sex the germ cell 

ablation does not result in sex reversal [6]. Similarly, in the reptiles, such as the red-eared 

slider (Trachemys scripta) the germ cell depletion after busulfan treatment does not alter 

the sex of the gonads [16]. The effects of germ cell absence on amphibian gonads have 

been studied only in the early stages of genital ridge formation in X. laevis and 

Pelophylax esculentus [20,21]. These studies showed that the germ cells are not required 

for the formation of genital ridges. 

Several studies showed that different vertebrates response differently to the loss 

of germ cells in the gonad [14-16]. Because our previous study showed that the 

gonadogenesis is different in divergent anuran amphibian species [22]. We assume that 

the effects of the germ cell depletion should vary within this group of vertebrates. Thus, 

we studied whether in different anuran species the gonadal sex is independent of the 

presence of germ cells and if the absence of germinal cells may lead , similar to zebrafish 
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and mouse, to sex reversal. To investigate this the 24h exposure of anuran tadpoles to 

water with 0.12 mM busulfan was carried out. We studied five anuran species 

representing distant phylogenetic lineages. The European fire-bellied toad (Bombina 

bombina: Bombinatoridae) and the African clawed frog (Xenopus laevis: Pipidae) are 

representatives of the most basal branches (Archaeobatrachia) [23]. The more derived 

group, Neobatrachia, was represented by two sister lineages: Hyloidea (Bufo viridis: 

Bufonidae, Hyla arborea: Hylidae) and Ranoidea (Rana temporaria: Ranidae). Our 

choice was determined by the fact that the sex determination as well as the gonadal 

differentiation patterns vary considerably between these anuran species. In some species 

the males are heterogametic (Bombina sp., H. arborea, R. temporaria) whereas in others 

the females are heterogametic (X. laevis, B. viridis) [24-27]. Moreover, sexual 

differentiation of gonads can take place at various stages of development: in early larval 

period (Bombina sp., X. laevis, H. arborea), during the metamorphosis (B. viridis) or 

postmetamorphosis (R. temporaria) [22,28,29].  

 

2. Materials and Methods 

2.1. Animals 

 Larvae of X. laevis (n=139) were obtained in the laboratory whereas the eggs of 

B. bombina, H. arborea, B. viridis and R. temporaria were collected in the wild. The 

tadpoles were reared in 10-L aquaria. X. laevis larvae were fed with Sera Micron (Sera, 

Heinsberg, Germany) twice a day. All specimens used in the experiment were acquired 

according to Polish legal regulations concerning the protection of wild species (Dz. U. nr 

33, poz. 289, 2005). We obtained permission from the Polish Ministry of Environment 
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Protection and Forestry and approval from the I Local Commission for Ethics in 

Experiments on Animals.  

 

2.2 Busulfan treatment 

Busulfan (1,4-butanediol dimethanesulfonate (Sigma, Poznań, Poland)) was 

dissolved in DMSO (0.6 M stock solution) and 2 mL of stock solution was added to 10 L 

of dechlorinated water to the final concentration 0.12 mM (i.e. 30 mg/L). Tadpoles of X. 

laevis were staged according to Nieuwkoop and Faber [30] and the other species 

according to Gosner [31]. Larvae at stages proceeding the genital ridge formation, i.e. at 

the Nieuwkoop stage 45 for X. laevis or the Gosner stage 24 for the rest, were placed in 

0.12 mM solution of busulfan for 24 h. Tadpoles kept in water with DMSO (0.2 ml/L) for 

24 h were used as a negative control. Afterwards both busulfanized and control animals 

were reared in water without busulfan or DMSO at temperature of 19
o
C and 12:12 L:D 

period. Premetamorphic larvae were staged and anesthetized with MS222 (Sigma, 

Poznań, Poland) solution once per week at Gosner stages 26, 30, 34, 37, 40, 44 and at 

Nieuwkoop stages 49, 51, 53, 55, 60, 64 for X. laevis. Postmetamorphic animals were 

anesthetized six months and one year after metamorphosis (Table 1). The gonads together 

with the kidneys and fat bodies were dissected and fixed in Bouin’s solution. 

 

2.3 Light microscopy 

Fixed organs were dehydrated and embedded in paraplast (Sigma, Poznań, 

Poland). Then 6 m sections were stained with Debreuill trichrome [32]. Images were 

taken with a Nikon Eclipse E600 light microscope and processed with Corel Photo-Paint 
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11. Numbers of cells were counted in 20 subsequent optical sections and compared using 

Student’s t-test in Statistica 6 Pl software. The germ cells were recognized due to the 

large, pale nuclei and the Sertoli cells were defined as the cells located inward from the 

basal laminae of the testis cords or seminiferous tubules after germ cell ablation [33]. 

 

3. Results 

3.1. The influence of busulfan on anuran tadpoles 

Busulfan treatment impacted anurans’ survival as well as the shape and size of the 

body (Tables 1, 2). The most noticeable effect was observed in the larval body length in 

B. bombina and B. viridis (Table 2). H. arborea larvae (37%) had impaired 

osmoregulation manifested by the storage of a large amount of fluid within the body. 

Some individuals (2%) showed malformations such as additional forelimbs. Because the 

busulfan had only a minor effect on the mortality and phenotype of larvae of X. laevis we 

have chosen this species to study the fate of germ cell depleted gonads.  

 

3.2. Effect of busulfan on X. laevis gonads 

3.2.1. Undifferentiated gonads 

X. laevis was the only species in which busulfan caused complete germ cell 

ablation, while the soma was almost unchanged (Table 3). Due to the disappearance of 

germ cells, the gonads of busulfanized individuals were smaller in comparison to the 

control (Tables 2,3). The formation of the genital ridges proceeded normally and began at 

the Nieuwkoop stage 49. The absence of the primordial germ cells during the formation 

of genital ridges indicated the apoptosis of PGCs during their extragonadal migration. At 
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the Nieuwkoop stage 51, the beginning of the medulla formation was visible due to the 

appearance of a somatic cell cluster in the gonadal hilus (the rudiment of medulla) (Fig. 

1A,B). Despite of the absence of the germ cells the somatic cells of the gonad were more 

abundant than in control. At the Nieuwkoop stage 53, a well-separated medulla, which is 

the sign of the ovarian differentiation, was discernible in the center of gonad. The gonads 

devoid of germ cells had a larger amount of extracellular matrix in stromal space, i.e. 

between the cortex and medulla. Melanophores and fibroblasts were visible within the 

relatively extensive stroma. The cortex and medulla of the ovary were lined with the 

folded basal laminae. 

 

3.2.2. Ovary differentiation 

At the Nieuwkoop stage 55, during sexual differentiation of the ovary, a 

secondary cavity appeared within the medulla due to dispersion of cells as in the control 

(Fig. 1C, D). In the absence of germ cells, the ovarian follicles or the germ cell nests in 

the cortex did not form (Fig. 1D). Somatic cells of the cortex were arranged in a thin 

layer covering the gonad and thus no follicular epithelium was observed. We did not 

identified any soma damages after busulfanization, i.e., exposure to busulfan, using the 

light microscopy (Fig. 1D). During the metamorphosis (the Nieuwkoop stage 64) the 

ovaries assumed the shape of a sac filled with an extensive cavity enclosed by two thin 

layers of somatic cells (cortex and medulla) separated by a thick sheath of extracellular 

matrix. 

 

3.2.3. Testis differentiation 
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At the Nieuwkoop stage 55, the sexual differentiation of the testis was 

recognizable owing to gathering of somatic cells into groups enclosed by the basal 

laminae in both the control and the busulfanized tadpoles (Fig. 1E,F). Thus the testis 

cords were formed regardless of the germ cell presence. The shrunken gonadal cortex 

transformed into the tunica albuginea enclosing the whole testis and a lumen appeared 

within the testis cords during metamorphosis as in the control. In the absence of germ 

cells, the seminiferous tubules were aligned with the Sertoli (epithelial) cells forming the 

pseudostratified epithelium. There were 22 ± 4.4 Sertoli cells per cross section of the 

testis cord in the busulfan-treated tadpoles whereas the control testis cords contained 5 ± 

1.5 Sertoli cells per section (P<0.05; n=50). Thus the number of Sertoli cells increased 

over four times in comparison to the control, which was clearly visible in the histological 

sections (Fig. 1E,F). Typical connections between the testis tubules and the tubules of 

extragonadal system were observed in busulfanized and the control animals. Although the 

gonads attained a smaller size in comparison to the control, no signs of developmental 

retardation were noticed at the premetamorphic stages (Table 2).  

  

3.2.4. Long term effects of busulfan 

Six months after metamorphosis only a small remnants of testes were observed 

among extensive fat bodies in 7 among 12 busulfanized individuals (Fig. 2A). In the 

other 5 individuals no gonads were found at all. The number of the seminiferous tubules 

was drastically reduced within such residual testes and some abnormal vesicles were 

noticeable at their periphery. It can be supposed that the sterile seminiferous tubules 

transformed into such extensive vesicles in juveniles. One year after metamorphosis 



Page 11 of 33

Acc
ep

te
d 

M
an

us
cr

ip
t

 10 

gonads could not be detected during the macroscopic dissection of busulfanized frogs 

(n=10). The extremely large fat bodies (corpora adiposa) filled the space of abdominal 

cavity. The remnants of testes were found embedded in the fat bodies in 4 individuals 

among 10 studied and were composed of a few sterile testis tubules lined with monolayer 

epithelium (Fig. 2B). The fat bodies were attached along the entire lengths of the kidneys. 

In 6 animals no signs of gonads could be noticed and no remnants of ovaries were 

discerned. 

 

3.3. Effect of busulfan on the gonads in B. bombina 

 In busulfanized individuals of the European fire-bellied toad, gonads were 

distinctly smaller and retarded in development than the control (Table 2, Fig. 3A,B,C). A 

reduction in germ cell number was apparent in busulfanized individuals, however, these 

cells were not completely eliminated and 15.95% of germ cells survived until the Gosner 

stage 34 (Table 3). The genital ridges were formed at the Gosner stage 26 similar to the 

control. The cluster of somatic cells in the gonadal hilus appeared at the Gosner stage 30 

(Fig. 3B), thus the rudimentary medulla was formed in spite of the germ cell absence. In 

the control gonads such a distinctive medulla was not noticeable at all (Fig. 3A). The 

visibly decreased number of somatic and germ cells resulted in alternation of the cortex 

and medulla differentiation and thus the connection of the medulla with the surface of the 

gonad, which was not observed in the control (Fig. 3A,B). The retardation of 

development was significant during both the pre- and postmetamorphic periods since the 

gonads found in six months old busulfan-treated toads were in the form of ridges 

composed of a thin sterile cortex and medulla and few gonial cells (Fig. 3C).  
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3.4. Effect of busulfan on H. arborea gonads 

In the gonads of busulfan treated larvae of Hyla arborea, the significant number 

of germ cells survived, i.e. up to 16.92% of germ cells until the Gosner stage 34 (Table 3, 

Fig. 3D,E,F). However, only 1.71% of germ cells survived until the metamorphosis, 

which may be a consequence of the impairment of the somatic part of the gonad. The size 

of the gonads in busulfanized tadpoles was similar to control (Table 2). The gonads in 

busulfanized tadpoles contained a larger amount of extracellular matrix distributed 

between germ and somatic cells (Fig. 3E). The separation of the cortex and medulla was 

not visible, which indicated a distortion of the cellular arrangement within the gonads 

after busulfanization (Fig. 3D,E). The presence of germ cells in both the cortical and 

medullar region, which is a sign of partial sex reversal, may resulted from the disruption 

of general structure of the gonad. Gonadal development after busulfanization was not 

visibly retarded in H. arborea before metamorphosis, which is probably related to the 

fact that the relatively high number of germ cells survived. After six months the gonads 

of busulfan-treated individuals were small and the medullary cells were embedded in 

abundant extracellular matrix (Fig. 3F). Some persisted gonial cells were present only in 

the peripheral region of the gonad. 

 

3.5. Effect of busulfan on B. viridis gonads 

The busulfan treatment of Bufo viridis resulted in the drastic decrease in the 

number of germ cells and the impairment of somatic cells (Table 3, Fig. 3H). Only 5.27% 

of germ cells persisted to the Gosner stage 34. The size of gonads was visibly reduced 
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(Table 2). Somatic cells in the gonads did not form cortico-medullary arrangement, which 

was present in the control (Fig. 3G,H). Six months after metamorphosis, only a streak of 

somatic cells persisted under the vena cava and there was no sign of the two gonadal 

layers in busulfanized individuals (Fig. 3I). Germ cells were encountered sporadically in 

such gonadal remnants. 

Visible reduction of the germ cell number was the only sign of busulfan effect in 

the Bidder’s organ. This organ is an ovary-like structure differentiated from the anterior 

part of the gonad in both males and females of all bufonids. The comparison of Bidder’s 

organ structure before and after metamorphosis did not indicate the progressive 

degeneration after busulfan exposure, which is probably related to the high number of 

surviving germ cells (Table 3, Fig. 3J,K,L); about 25% of germ cells persisted in the 

Bidder’s organ throughout the development (Table 3). Our observations showed a 

stronger cytotoxic effects of busulfan on the proper gonads than on the Bidder’s organ. 

 

3.6. Effect of busulfan on R. temporaria gonads 

The genital ridges at Gosner stage 26 in busulfanized larvae of Rana temporaria 

were comparable to control. The number of surviving germ cells was highest among five 

tested species and was 16.92% at the Gosner stage 34 and significantly decreased to 

7.24% around metamorphosis (Table 3, Fig. 3M,N,O). Before metamorphosis the cortico-

medullary arrangement of the busulfanized gonad was comparable to control. The 

amount of extracellular matrix was extremely large after busulfanization, nonetheless, the 

separation of the cortex and medulla was not evident (Fig. 3N). Persisting germ cells 

were located usually in the peripheral region of the gonad. Numerous small cavities were 
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present in the gonadal centre instead of one large secondary cavity developing in the 

control. The somatic cells formed a thick peripheral layer covering the gonad. 

Busulfanized gonads just before metamorphosis resembled gonads of the Gosner stage 34 

indicating a developmental retardation. Six months after metamorphosis, the gonads of 

busulfan-treated individuals were filled with the extensive space enclosed by a thick 

multilayer cortex containing germ cells (Fig. 3O). This indicates a strong retardation of 

the gonadal development after metamorphosis as well as the disappearance of the gonadal 

medulla. 

 

4. Discussion 

Busulfan is a potent anti-cancer agent, however, it has damaging side effect on 

normal cells. The most sensitive are proliferating primordial germ cells and therefore 

busulfan treatment leads to infertility. In amphibians busulfan treatment affects both germ 

and somatic cells of the gonad. In the majority of species investigated in this study (B. 

bombina, H. arborea, B. viridis, R. temporaria) the busulfan treatment resulted in a 

partial depletion of germ cells and somatic malformations as well as the increased 

mortality during metamorphosis. At early stages (i.e. Nieuwkoop stage 49 or Gosner 

stage 26) the animals were the most sensitive to busulfan, which was reflected in the 

highest mortality. The decreased survival was also observed at metamorphosis, which 

was also typical for control. The highest survival was characteristic for X. laevis while the 

highest mortality for B. viridis. In B. bombina, B. viridis and R. temporaria busulfan 

caused a significant impairment in the somatic part of the gonads and a retardation of 

their embryo development. In H. arborea the development of gonads was slightly altered. 
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Structural distortion such as an excessive deposition of extracellular matrix visible in 

gonads of this species probably were the result of the germ cell loss during the 

development. X. laevis was the only tested species in which busulfan led to a total lack of 

germ cells without any degenerative effects on the seminiferous tubules and did not cause 

somatic damage in tadpoles resulting in the development of mature but sterile 

individuals. The specific resistance of the soma in X. laevis to busulfan may be related to 

its ploidy. This species is allotetraploid and evolved from interspecific hybridization [34], 

which can cause its unusual vigor. The persistence of gonadal structure despite the 

absence of germ cells as well as the high survival make X. laevis a good model species 

for studies of the role of germ cells on the gonad development. This model may facilitate 

the understanding of mechanisms responsible for germ cell aplasia in the human Del 

Castillo syndrome, also termed Sertoli cell-only syndrome (SCO). This syndrome is 

characterized by the total absence of germ cells in male patients (SCO type I) or by the 

presence of few germ cells in a minority of tubules (SCO type II). Patients with Del 

Castillo syndrome usually bear mutated Y chromosome, particularly deletions of the 

AZFa region containing gene USP9Y [35,36].  

The most visible effect of busulfanization in anurans, besides germ cell loss, was 

the reduction of gonad size, a drastic developmental retardation and a tendency to gonad 

degeneration after metamorphosis. The small size of the gonads is the result of a lack of 

germ cells, similar to the Del Castillo syndrome in humans [35]. We found that in all  

studied species the early genital ridges were normally formed. We observed the total lack 

of primordial germ cells during the formation of genital ridges only in X. laevis. This 

indicates that the primordial germ cell migration into the sites of gonadal formation did 
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not induce formation of the genital ridges. Several other studies also have shown that the 

genital ridges can develop in the absence of germ cells [20,21]. Wylie and coworkers 

(1976) analyzed the earliest stage of X. laevis genital ridge development and concluded 

that only unorganized masses of somatic cells are formed when germ cells are depleted 

by UV-irradiation. However, this research did not extend to later stages of Xenopus 

development. The latter study [21] examined the interspecific hybrid Pelophylax 

esculentus in which germ cells often disappear during development and a few individuals 

exhibited an unaltered gonadal arrangement after germ cell apoptosis.  

We found that in all studied species the cortex and medulla of the gonad began the 

development in spite of the absence of germ cells. Basal laminae appeared between these 

two gonadal parts. However, before metamorphosis the gonadal structure was disrupted, 

which was accompanied by the intensified deposition of extracellular matrix and basal 

lamina. We observed that the matrix was overdeveloped especially when a lot of somatic 

cells persisted. Thus the somatic cells are responsible for the formation of basal lamina 

and extracellular matrix components between the cortex and medulla and the germ cells 

are dispensable for the establishment of the cortico-medullary arrangement of the gonad. 

The thick layer of stroma between the cortex and medulla did not inhibit the movement 

of germ cells since some surviving germ cells were often present in the gonadal medulla 

in R. temporaria and H. arborea. The presence of germ cells in the medulla suggests 

testicular differentiation whereas the appearance of a cavity within the medulla is a sign 

of ovarian development. We often observed the simultaneous occurrence of these two 

conditions in R. temporaria and H. arborea, which could be a sign of the partial sex 

reversal. Such an impairment of gonadal structure can be a result of a direct busulfan 
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effect on somatic cells rather than the germ cell loss. This is confirmed by the fact that 

the somatic part of the X. laevis gonad is almost unchanged in spite of the total germ cell 

lack.  

Our data showed for the first time that the complete sex reversal is not observed 

after germ cell ablation in anuran amphibians. No signs of testicular differentiation were 

noticeable in developing anuran ovaries after germ cell ablation. Similarly, no sex 

reversal following the germ cell loss was observed in the slider Trachemys scripta [16]. 

Such resistance may result from better canalization of the sex determining pathway or 

from the lack of germ cell contribution to the sex determination in these species. Thus 

germ cells seem dispensable for sex determination in anurans, while they appear of key 

importance for the sexual differentiation of gonads in many vertebrates, e.g. in zebrafish 

(Danio rerio) and mammals. Namely, genetic depletion of germ cells in mouse and 

zebrafish leads to the development of testis structure in females following the trigger of 

the expression of male sex determination markers [15,37]. Some mutations leading to the 

germ cell loss followed by female-to-male sex reversal have been described also in the 

mouse [38-40]. Likewise, busulfan treatment, in utero irradiation and long term-culture in 

vitro trigger the testicular development within the mammalian ovaries [41]. These 

observations indicated that germ cells in many mammals and zebrafish are critical for the 

maintenance of the female pathway in the ovary and repression of the male sex 

determination pathway. However, the structure of the ovary in X. laevis is probably more 

canalized and the male sex determination pathway is unable to take control over the 

female gonad and thus sex reversal does not occur. 

The development of the testis in X. laevis was proceeding in spite of the germ cell 
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lack. Importantly, a lumen appeared among Sertoli cells forming seminiferous tubules in 

the testes during metamorphosis. This indicates that testicular differentiation and 

formation of the adult testis structure proceeds in spite of the lack of germ cells. It is also 

interesting that the number of Sertoli cells in the testes of busulfanized males increased in 

the absence of germ cells in X. laevis. Moreover, these testicular somatic cells were more 

numerous already since the beginning of gonadal development. A similar situation was 

observed in the testis of the slider T. scripta deprived of germ cells [16]. This implies that 

germ cells control the number of somatic cells in the gonad and that spermatogenic cells 

influence the somatic cells within the testis cords by inhibition of hyperproliferation of 

Sertoli cells. 

During the ovarian differentiation in busulfan treated Xenopus tadpoles, as a result 

of germ cell absence, the somatic cells in the cortex formed only a thin layer. Similar 

condition was observed in busulfanized slider T. scripta [16]. Neither epithelium of 

ovarian nests nor follicles were formed in busulfanized animals, suggesting that the 

development of these structures is induced and/or controlled by germ cells. This shows 

that germ cells are required in the ovary to form the follicular epithelium that together 

with oocytes constitute the ovarian follicles. In mammals, oocytes secrete many growth 

factors (such as GDF9) involved in the promotion of follicle cell proliferation and 

differentiation (folliculogenesis) [42]. Therefore germ cell depletion resulting in the 

complete lack of follicles in Xenopus indicates a similar mechanism of folliculogenesis in 

amphibians. 

Surprisingly, degeneration of the gonads was proceeding after the metamorphosis 

in the individuals deprived of the germ cells. Only in H. arborea signs of gonad 
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degeneration was relatively mild, which suggested that the persisting germ cells prevent 

the progression of degeneration. The most significant degeneration of gonads after 

metamorphosis was observed in Xenopus . The females were probably deprived of the 

gonads altogether, however, the male gonads were small six months after metamorphosis 

and highly reduced in one year old frogs. The abdominal cavity of frogs was filled with 

extremely developed fat bodies (corpora adiposa) within which remnants of testicular 

tubules were found. Probably, the somatic cells of anuran gonads could transdifferentiate 

into fat cells (adipocytes) in the absence of germ cells, leading to the transition of sterile 

gonads into fat tissue after metamorphosis. We observed such a phenomenon exclusively 

in X. laevis. Thus it can be assumed that the persisting cells prevent the fat cell 

differentiation in other species. In anurans fat is stored in fat bodies that are formed from 

the anterior part of the genital ridges [9]. This gonadal region loses its germinal function 

due to the germ cell loss and differentiates into fat bodies at early stages of 

gonadogenesis [9,12].It is possible that the molecular program of adipocyte 

differentiation is initiated in somatic cells in the absence of germ cells. Germ cells 

probably inhibit adipocyte-promoting factors such as insulin, IGF1, WNT10b, SHH, 

TGFβ, FGF, BMPs [43]. Thus busulfanized X. laevis provides a good model for the study 

of the molecular machinery involved in fat tissue differentiation. 

5. Conclusion 

In summary, our research shows that in many anuran species the germ cells are 

unnecessary for: (i) the formation of genital ridges, (ii) the cortico-medullary 

differentiation of gonads, (iii) the sexual differentiation of gonads. However, 

busulfanization leads to various degree of impairment of gonad structures and the germ 
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cells appeared to be a key in the prevention of gonad degeneration after metamorphosis 

and/or their transition into fat bodies. The most resistant to busulfan treatment is X. laevis 

in which the somatic part of the gonad developed normally in the absence of germ cells. 

X. laevis may thus serve as a good model of Del Castillo syndrome for further studies of 

the molecular and cellular mechanisms participating in the function of the gonad deprived 

of germ cells.  
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Figure legends 

Fig. 1. Effects of busulfan on Xenopus laevis gonads. A. In the undifferentiated control 

gonad germ cells (asterisk) and somatic cells are present at the Nieuwkoop stage 51. B. In 

the undifferentiated busulfanized gonad germ cells are absent while somatic cells become 

more numerous. C. The control ovary is recognizable owing to germ cells (asterisk) 

located in the cortex during metamorphosis (at the Nieuwkoop stage 64). The secondary 

cavity fills the medulla (arrow). D. The busulfanized ovary is totally sterile however, both 

the cortex and medulla are present and the large amount of extracellular matrix is visible 

(arrowhead). E. During metamorphosis spermatogonia (asterisk) are located in testis 

cords and Sertoli cells (Sc) are not numerous in the control testis. The lumen appears 

within the cords (arrowhead). F. The busulfanized testis at this stage is characterized by 

not only the total lack of germ cells but also enormously great number of Sertoli cells 

(Sc). Scale bar 20 m. 

 

Fig. 2. Sterile testes in Xenopus laevis after metamorphosis. A. Six months after 

metamorphosis the testes structure is altered and the organ size is lowed. The number of 

seminiferous tubules is reduced and the vesicles appear due to the extension of the lumen 

in the peripheral tubules (asterisks). B. In one year old frogs the testes are reduced into a 

few sterile seminiferous tubules (arrow heads) persisted within the extensive fat body. 

Scale bar 40 m. 

 

Fig. 3. Effects of busulfan on anuran gonads. A,B. The undifferentiated gonads in 

Bombina bombina at the Gosner stage 34 reveals that busulfan caused partial reduction of 
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germ cells (asterisk) and significant retardation of gonadal development. The gonadal 

medulla is distinctive in the absence of germ cells (arrow). C. Six months after 

metamorphosis, a few germ cells still persist within the gonad. The cortico-mellulary 

arrangement is visible. D,E. In Hyla arborea at the Gosner stage 34, the reduction of 

germ cell number and retardation of development are visible. The signs of structure 

distortion are observed due to the presence of germ cells (asterisk) in both the cortex and 

medulla. F. Six months after metamorphosis the structure of the gonad is altered, somatic 

cells are disorderly located within the abundant stroma and a few germ cells are 

observed. Abundant of extracellular matrix is discernible (blue). G. The undifferentiated 

gonad of Bufo viridis displays the cortico-medullar structure. H. The total lack of germ 

cells and a significant impairment of gonad structure is discernible at the Gosner stage 

34. I. Six months after metamorphosis, only a streak of somatic cells persist under the 

vena cava. J,K. The number of oocytes (asterisks) in the Bidder’s organ in B. viridis is 

lower over 4 times after busulfanization (K) in the comparison to the control (J). L. The 

Bidder’s organ six months after metamorphosis contains shows reduced number of 

oocytes but no progressive degeneration is visible. M,N. In Rana temporaria at the 

Gosner stage 34, a high reduction of the germ cell (asterisk) number results in a 

significant change in gonadal structure visible comparing to the control (M). Small 

cavities appear within the abundant stroma (bleu). The number of somatic cells covering 

the gonad is thicker than in the control. O. After six months, the gonad is filled with the 

extensive space and a few germ cells are visible in the layer covering the gonad. Scale 

bar 20 m. 
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Tab. 1. Number of animals used in experiment. N1 – number of individuals survived after 

exposure on busulfan. N2 – number of dead individuals after busulfanization. M1 – mortality 

after busulfanization. N3 – number of control individuals. N4 – number of dead control 

animals. M2 – mortality in the control.  

 

 
 busulfanized control  

species stages N1 N2 M1 (%) N3 N4 M2 (%) sum 

Xenopus laevis 49 7 1 12.50 11 0 0 19 

51 10 0 0 10 0 0 20 

53 9 0 0 9 0 0 18 

55 4 0 0 12 1 7.69 17 

60 6 0 0 9 0 0 15 

64 10 0 0 8 0 0 18 

6 months 12 0 0 5 0 0 17 

1 year 10 0 0 5 0 0 15 

sum 68 1 1.47 69 1 1.45 139 

Bombina bombina 26 5 2 28.57 7 1 12.50 15 

30 9 1 10 9 0 0 19 

34 9 1 10 10 0 0 20 

37 8 3 27.27 9 0 0 20 

40 7 0 0 9 0 0 16 

44 6 5 45.45 6 3 33.33 20 

6 months 3 0 0 9 0 0 12 

1 year 2 0 0 7 0 0 9 

sum 49 12 19.67 66 4 5.71 131 

Hyla arborea 26 5 6 54.54 9 1 10 22 

30 10 6 37.50 12 0 0 28 

34 9 1 10 9 0 0 19 

37 5 0 0 6 1 14.29 12 

40 10 0 0 13 3 18.75 26 

44 13 3 18.75 17 0 0 33 

6 months 12 5 27.77 15 4 21.05 36 

1 year 4 0 0 8 0 0 12 

sum 68 21 23.60 89 13 12.75 191 

Bufo viridis 26 10 12 54.55 10 0 0 32 

30 6 4 40 10 0 0 20 

34 15 6 28.57 9 1 10 31 

37 5 1 16.66 14 0 0 20 

40 7 0 0 12 2 14.29 21 

44 10 4 40 15 1 6.25 30 

6 months 15 2 11.76 8 2 20 27 

1 year 4 1 25 4 0 0 9 

sum 72 30 29.41 82 6 6.82 190 

Rana temporaria 26 10 9 47.37 15 2 11.76 36 

30 10 1 9.09 7 0 0 18 

34 10 6 37.50 13 0 0 29 

37 8 0 0 9 0 0 17 

40 8 0 0 15 1 6.25 24 

44 13 3 18.75 19 3 14.29 38 

6 months 2 2 50 15 4 21.05 23 

1 year 4 3 42.86 6 0 0 13 

sum 65 24 26.97 99 10 9.17 198 

 

Tables
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Tab. 2. Body length (SVL) and gonad size among tadpoles: A - at the Gosner stage 34 (at the 

Nieuwkoop stage 53 for Xenopus laevis), B - at the Gosner 44 (the Nieuwkoop stage 64 for 

Xenopus laevis), C - 6 months after metamorphosis.   

A 
 

species 

SVL (mm) ± SD gonad diameter (m) ± SD 

busulfanized control busulfanized control 

Xenopus laevis 30.2 ± 1.9 31.1 ± 1.4 35.3 ± 5.4 91.4 ± 6.7 

Bombina bombina 22.4 ± 2.3 30.5 ± 1.8 32.7 ± 5.6 120.9 ± 3.6 

Hyla arborea 30.1 ± 1.8 36.8 ± 1.3 56.7 ± 7.8 120.3 ± 5.8 

Bufo viridis 12.9 ± 2.4 20.4 ± 1.9 36.4 ± 5.9 77.4 ± 6.9 

Rana temporaria 24.3 ± 1.6 26.9 ± 1.2 54.0 ± 3.7 98.2 ± 4.7 

 

B 
 

species 

SVL (mm) ± SD gonad diameter (m) ± SD 

busulfanized control busulfanized control 

Xenopus laevis 62.2 ± 3.7 63.1 ± 2.7 107.3 ± 4.4 215.9 ± 68.7 

Bombina bombina 39.5 ± 2.5 60.5 ± 2.2 33.7 ± 5.6 202.7 ± 19.1 

Hyla arborea 31.2 ± 4.8 39.8 ± 3.3 59.7 ± 6.9 141.6 ± 57.7 

Bufo viridis 9.3 ± 1.1 10.3 ± 1.8 26.4 ± 5.9 107.7 ± 17.9 

Rana temporaria 24.9 ± 2.1 28.1 ± 1.8 84.0 ± 4.1 248.2 ± 24.6 

 

C 
 

species 

SVL (mm) ± SD gonad diameter (m) ± SD 

busulfanized control busulfanized control 

Xenopus laevis 25.2 ± 2.3 25.3 ± 1.5 41.2 ± 13.9 1507.4 ± 789.8 

Bombina bombina 10.4 ± 3.3 19.5 ± 2.6 43.7 ± 6.7 465.9 ± 463.1 

Hyla arborea 14.1 ± 1.5 16.8 ± 1.9 62.9 ± 8.5 340.3 ± 196.8 

Bufo viridis 9.9 ± 3.4 11.4 ± 0.4 36.4 ± 7.8 273.4 ± 46.9 

Rana temporaria 13.2 ± 1.1 14.9 ± 1.8 45.0 ± 14.6 464.2 ± 53.7 

 

Tables
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Tab. 3. Number of germ cells per 10 sections (± SD) after busulfanisation and the percentage 

of surviving cells (%SC): A - in tadpole gonads at the Gosner stage 34 (at the Nieuwkoop 

stage 53 for Xenopus laevis), B - at the Gosner stage 44 (at the Nieuwkoop stage 64 for 

Xenopus laevis), C - 6 months after metamorphosis.  

 

 

A 
species busulfanized %SC control 

Xenopus laevis  0 ± 0 0% 9.27 ± 1.09 

Bombina bombina  3.65 ± 1.43 15.95% 22.88 ± 18.35 

Hyla arborea  9.00 ± 0.96 16.92% 53.20 ± 15.43 

Bufo viridis – proper gonad  0.33 ± 0.61 5.27% 6.26 ± 3.20 

Bufo viridis – Bidder’s organ 8.29 ± 1.54 25.49% 32.40 ± 13.51 

Rana temporaria 4.90 ± 1.45 23.09% 21.22 ± 7.82 

 

B 
species busulfanized %SC control 

Xenopus laevis  0 ± 0 0% 51.72 ± 12.87 

Bombina bombina  1.25 ± 1.09 2.78% 44.97 ± 15.85 

Hyla arborea  2.06 ± 0.57 1.71% 120.12 ± 45.57 

Bufo viridis – proper gonad 0.21 ± 0.42 1.33% 15.76 ± 5.12 

Bufo viridis – Bidder’s organ 10.30 ± 4.60 25.83% 39.87 ± 17.45 

Rana temporaria  1.85 ± 0.50 7.24% 25.54 ± 9.12 

 

C 
species busulfanized %SC control 

Xenopus laevis 0 ± 0 0% 64.75 ± 18.75 

Bombina bombina  1.10 ± 0.50 1.12% 97.88 ± 22.39 

Hyla arborea 2.18 ± 0.76 1.49% 146.29 ± 35.93 

Bufo viridis – proper gonad 0.22 ± 0.39 0.58% 37.87 ± 18.50 

Bufo viridis – Bidder’s organ 9.26 ± 3.89 22.52% 41.11 ± 19.32 

Rana temporaria 1.09 ± 0.50 4.18% 26.10 ± 8.77 

 

 

 

Tables
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Figure

http://ees.elsevier.com/rtx/download.aspx?id=95599&guid=e0e27a74-28bb-44ba-9601-1414965e9415&scheme=1
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Figure

http://ees.elsevier.com/rtx/download.aspx?id=95600&guid=b833bb88-68d3-496f-a0a2-9365404fce88&scheme=1
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Figure
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