P. A. Meyers, R. Gorlick, and O. , OSTEOSARCOMA, Pediatric Clinics of North America, vol.44, issue.4, pp.973-89, 1997.
DOI : 10.1016/S0031-3955(05)70540-X

G. Rosen, Preoperative chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy, Cancer, issue.6, pp.49-1221, 1982.

G. Bacci, Influence of local recurrence on survival in patients with extremity osteosarcoma treated with neoadjuvant chemotherapy, Cancer, vol.84, issue.12, pp.2701-2707, 2006.
DOI : 10.1002/cncr.21937

O. S. Bruland and A. Pihl, On the current management of osteosarcoma. A critical evaluation and a proposal for a modified treatment strategy, European Journal of Cancer, vol.33, issue.11, pp.33-1725, 1997.
DOI : 10.1016/S0959-8049(97)00252-9

M. Kreuter, Prognostic Relevance of Increased Angiogenesis in Osteosarcoma, Clinical Cancer Research, vol.10, issue.24, pp.8531-8538, 2004.
DOI : 10.1158/1078-0432.CCR-04-0969

O. Reilly and M. S. , Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma, Cell, vol.79, issue.2, pp.315-343, 1994.
DOI : 10.1016/0092-8674(94)90200-3

O. Reilly and M. S. , Endostatin: An Endogenous Inhibitor of Angiogenesis and Tumor Growth, Cell, vol.88, issue.2, pp.277-85, 1997.
DOI : 10.1016/S0092-8674(00)81848-6

M. Dhanabal, Cloning, Expression, andin VitroActivity of Human Endostatin, Biochemical and Biophysical Research Communications, vol.258, issue.2, pp.345-52, 1999.
DOI : 10.1006/bbrc.1999.0595

S. S. Yoon, Mouse endostatin inhibits the formation of lung and liver metastases, Cancer Res, vol.59, issue.24, pp.6251-6257, 1999.

Y. Yokoyama, Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth, Cancer Res, vol.60, issue.8, pp.2190-2196, 2000.

O. Kisker, Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model, Cancer Res, issue.20, pp.61-7669, 2001.

W. Shi, Adeno-associated virus???mediated gene transfer of endostatin inhibits angiogenesis and tumor growth in vivo, Cancer Gene Therapy, vol.9, issue.6, pp.513-534, 2002.
DOI : 10.1038/sj.cgt.7700463

A. L. Feldman, Effect of Retroviral Endostatin Gene Transfer on Subcutaneous and Intraperitoneal Growth of Murine Tumors, JNCI Journal of the National Cancer Institute, vol.93, issue.13, pp.93-1014, 2001.
DOI : 10.1093/jnci/93.13.1014

C. Mundhenke, Tissue examination to monitor antiangiogenic therapy: a phase I clinical trial with endostatin, Clin Cancer Res, issue.711, pp.3366-74, 2001.

J. P. Eder and . Jr, Phase I Clinical Trial of Recombinant Human Endostatin Administered as a Short Intravenous Infusion Repeated Daily, Journal of Clinical Oncology, vol.20, issue.18, pp.20-3772, 2002.
DOI : 10.1200/JCO.2002.02.082

R. S. Herbst, Phase I Study of Recombinant Human Endostatin in Patients With Advanced Solid Tumors, Journal of Clinical Oncology, vol.20, issue.18, pp.3792-803, 2002.
DOI : 10.1200/JCO.2002.11.061

J. P. Thomas, Phase I Pharmacokinetic and Pharmacodynamic Study of Recombinant Human Endostatin in Patients With Advanced Solid Tumors, Journal of Clinical Oncology, vol.21, issue.2, pp.223-254, 2003.
DOI : 10.1200/JCO.2003.12.120

K. Bjornland, Matrix Metalloproteinases Participate in Osteosarcoma Invasion, Journal of Surgical Research, vol.127, issue.2, pp.151-157, 2005.
DOI : 10.1016/j.jss.2004.12.016

M. Kansara, D. M. Thomas-fan, and D. G. , Molecular Pathogenesis of Osteosarcoma, DNA and Cell Biology, vol.26, issue.1, pp.1-18, 2007.
DOI : 10.1089/dna.2006.0505

C. M. Diaz-montero, J. N. Wygant, and B. W. Mcintyre, PI3-K/Akt-mediated anoikis resistance of human osteosarcoma cells requires Src activation, European Journal of Cancer, vol.42, issue.10, pp.42-1491, 2006.
DOI : 10.1016/j.ejca.2006.03.007

P. Hingorani, Inhibition of Src Phosphorylation Alters Metastatic Potential of Osteosarcoma In vitro but not In vivo, Clinical Cancer Research, vol.15, issue.10, pp.15-3416, 2009.
DOI : 10.1158/1078-0432.CCR-08-1657

L. C. Kim, L. Song, and E. B. Haura, Src kinases as therapeutic targets for cancer, Nature Reviews Clinical Oncology, vol.439, issue.10, pp.587-95, 2009.
DOI : 10.1038/nrclinonc.2009.129

E. M. Rubin, Wnt Inhibitory Factor 1 Decreases Tumorigenesis and Metastasis in Osteosarcoma, Molecular Cancer Therapeutics, vol.9, issue.3, pp.731-772, 2010.
DOI : 10.1158/1535-7163.MCT-09-0147

Y. Guo, Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells, Journal of Orthopaedic Research, vol.65, issue.7, pp.25-964, 2007.
DOI : 10.1002/jor.20356

F. Engin, Notch signaling contributes to the pathogenesis of human osteosarcomas, Human Molecular Genetics, vol.18, issue.8, pp.1464-70, 2009.
DOI : 10.1093/hmg/ddp057

D. P. Hughes, How the NOTCH Pathway Contributes to the Ability of Osteosarcoma Cells to Metastasize, Cancer Treat Res, vol.152, pp.479-96, 2009.
DOI : 10.1007/978-1-4419-0284-9_28

M. Tanaka, Inhibition of Notch pathway prevents osteosarcoma growth by cell cycle regulation, British Journal of Cancer, vol.51, issue.12, pp.1957-65, 2009.
DOI : 10.1038/35017108

P. Zhang, Critical Role of Notch Signaling in Osteosarcoma Invasion and Metastasis, Clinical Cancer Research, vol.14, issue.10, pp.2962-2971, 2008.
DOI : 10.1158/1078-0432.CCR-07-1992

Y. Soini, Expression of MMP2, MMP9, MT1-MMP, TIMP1, and TIMP2 mRNA in valvular lesions of the heart, The Journal of Pathology, vol.266, issue.2, pp.225-256, 2001.
DOI : 10.1002/path.850

Y. Kato, T. Yamashita, and M. Ishikawa, Relationship between expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 and invasion ability of cervical cancer cells, Oncology Reports, issue.93, pp.565-574, 2002.
DOI : 10.3892/or.9.3.565

P. P. Lee, Functional Significance of MMP-9 in Tumor Necrosis Factor-Induced Proliferation and Branching Morphogenesis of Mammary Epithelial Cells, Endocrinology, vol.141, issue.10, pp.141-3764, 2000.
DOI : 10.1210/en.141.10.3764

K. Soreide, Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis, The Journal of Pathology, vol.16, issue.2, pp.147-56, 2006.
DOI : 10.1002/path.1999

Y. Y. Cheng, Alendronate regulates cell invasion and MMP-2 secretion in human osteosarcoma cell lines. Pediatr Blood Cancer, pp.410-415, 2004.

P. Heikkila, Inhibition of matrix metalloproteinase-14 in osteosarcoma cells by clodronate, Journal of Surgical Research, vol.111, issue.1, pp.45-52, 2003.
DOI : 10.1016/S0022-4804(03)00086-6

Z. F. Xin, Y. K. Kim, S. T. Jung, and D. , Risedronate inhibits human osteosarcoma cell invasion Bisphosphonates: new therapeutic agents for the treatment of bone tumors, J Exp Clin Cancer Res Trends Mol Med, issue.7, pp.10-337, 2004.

G. Moriceau, Therapeutic Approach of Primary Bone Tumours by Bisphosphonates, Current Pharmaceutical Design, vol.16, issue.27, pp.2981-2988, 2010.
DOI : 10.2174/138161210793563554

URL : https://hal.archives-ouvertes.fr/inserm-00511241

H. J. Cho, Disulfiram Suppresses Invasive Ability of Osteosarcoma Cells Via the Inhibition of MMP-2 and MMP-9 Expression, BMB Reports, vol.40, issue.6, pp.40-1069, 2007.
DOI : 10.5483/BMBRep.2007.40.6.1069

C. E. Macsai, B. K. Foster, and C. J. Xian, Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair, Journal of Cellular Physiology, vol.40, issue.3, pp.578-87, 2008.
DOI : 10.1002/jcp.21342

D. A. Glass, Canonical Wnt Signaling in Differentiated Osteoblasts Controls Osteoclast Differentiation, Developmental Cell, vol.8, issue.5, pp.751-64, 2005.
DOI : 10.1016/j.devcel.2005.02.017

Y. Kawano, R. Kypta, R. , and G. Rawadi, Secreted antagonists of the Wnt signalling pathway Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton, J Cell Sci Endocrinology, issue.1166, pp.148-2635, 2003.

E. Canalis, A. Giustina, and J. P. Bilezikian, Mechanisms of Anabolic Therapies for Osteoporosis, New England Journal of Medicine, vol.357, issue.9, pp.905-921, 2007.
DOI : 10.1056/NEJMra067395

J. C. Hsieh, A new secreted protein that binds to Wnt proteins and inhibits their activities, Nature, issue.6726, pp.398-431, 1999.

O. Tetsu and F. Mccormick, Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells, Nature, vol.398, issue.6726, pp.422-428, 1999.

T. C. He, Identification of c-MYC as a Target of the APC Pathway, Science, vol.281, issue.5382, pp.281-1509, 1998.
DOI : 10.1126/science.281.5382.1509

H. C. Crawford, The metalloproteinase matrilysin is a target of ??-catenin transactivation in intestinal tumors, Oncogene, vol.18, issue.18, pp.2883-91, 1999.
DOI : 10.1038/sj.onc.1202627

P. J. Kim, Survivin and molecular pathogenesis of colorectal cancer, The Lancet, vol.362, issue.9379, pp.205-214, 2003.
DOI : 10.1016/S0140-6736(03)13910-4

R. C. Haydon, Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis, Int J Cancer Clin Exp Metastasis, vol.102, issue.46, pp.338-380, 2002.

K. Iwao, Frequent ??-Catenin Abnormalities in Bone and Soft-tissue Tumors, Japanese Journal of Cancer Research, vol.58, issue.2, pp.205-214, 1999.
DOI : 10.1111/j.1349-7006.1999.tb00734.x

B. H. Hoang, Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma, International Journal of Cancer, vol.21, issue.1, pp.106-117, 2004.
DOI : 10.1002/ijc.11677

B. H. Hoang, Dickkopf 3 Inhibits Invasion and Motility of Saos-2 Osteosarcoma Cells by Modulating the Wnt-??-Catenin Pathway, Cancer Research, vol.64, issue.8, pp.2734-2743, 2000.
DOI : 10.1158/0008-5472.CAN-03-1952

P. C. Leow, Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/beta-catenin antagonists against human osteosarcoma cells, Invest New Drugs, issue.6, pp.28-766, 2010.

J. Mazieres, Wnt Inhibitory Factor-1 Is Silenced by Promoter Hypermethylation in Human Lung Cancer, Cancer Research, vol.64, issue.14, pp.4717-4737, 2004.
DOI : 10.1158/0008-5472.CAN-04-1389

Y. C. Lin, Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines, Biochemical and Biophysical Research Communications, vol.341, issue.2, pp.635-675, 2006.
DOI : 10.1016/j.bbrc.2005.12.220

L. Ai, Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer, Carcinogenesis, vol.27, issue.7, pp.1341-1349, 2006.
DOI : 10.1093/carcin/bgi379

S. Artavanis-tsakonas, M. D. Rand, and R. J. Lake, Notch Signaling: Cell Fate Control and Signal Integration in Development, Science, vol.284, issue.5415, pp.284-770, 1999.
DOI : 10.1126/science.284.5415.770

R. Kopan and M. X. Ilagan, The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism, Cell, vol.137, issue.2, pp.216-249, 2009.
DOI : 10.1016/j.cell.2009.03.045

T. Iso, L. Kedes, and Y. Hamamori, HES and HERP families: Multiple effectors of the notch signaling pathway, Journal of Cellular Physiology, vol.271, issue.3, pp.237-55, 2003.
DOI : 10.1002/jcp.10208

M. C. Maa, Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers., Proceedings of the National Academy of Sciences, vol.92, issue.15, pp.92-6981, 1995.
DOI : 10.1073/pnas.92.15.6981

S. Mori, Identification of two juxtamembrane autophosphorylation sites in the PDGF betareceptor ; involvement in the interaction with Src family tyrosine kinases, EMBO J, vol.12, issue.6, pp.2257-64, 1993.

M. P. Playford and M. D. Schaller, The interplay between Src and integrins in normal and tumor biology, Oncogene, vol.23, issue.48, pp.7928-7974, 2004.
DOI : 10.1038/sj.onc.1208080

M. Talpaz, Dasatinib in Imatinib-Resistant Philadelphia Chromosome???Positive Leukemias, New England Journal of Medicine, vol.354, issue.24, pp.2531-2572, 2006.
DOI : 10.1056/NEJMoa055229

F. M. Johnson, Dasatinib (BMS-354825) Tyrosine Kinase Inhibitor Suppresses Invasion and Induces Cell Cycle Arrest and Apoptosis of Head and Neck Squamous Cell Carcinoma and Non-Small Cell Lung Cancer Cells, Clinical Cancer Research, vol.11, issue.19, pp.6924-6956, 2005.
DOI : 10.1158/1078-0432.CCR-05-0757

M. M. Schittenhelm, Dasatinib (BMS-354825), a Dual SRC/ABL Kinase Inhibitor, Inhibits the Kinase Activity of Wild-Type, Juxtamembrane, and Activation Loop Mutant KIT Isoforms Associated with Human Malignancies, Cancer Research, vol.66, issue.1, pp.473-81, 2006.
DOI : 10.1158/0008-5472.CAN-05-2050

A. C. Shor, Dasatinib Inhibits Migration and Invasion in Diverse Human Sarcoma Cell Lines and Induces Apoptosis in Bone Sarcoma Cells Dependent on Src Kinase for Survival, Cancer Research, vol.67, issue.6, pp.67-2800, 2007.
DOI : 10.1158/0008-5472.CAN-06-3469

L. B. Owen-schaub, Fas and Fas Ligand Interactions Suppress Melanoma Lung Metastasis, The Journal of Experimental Medicine, vol.15, issue.9, pp.1717-1740, 1998.
DOI : 10.1084/jem.184.2.429

T. J. Sayers, Molecular mechanisms of immune-mediated lysis of murine renal cancer: differential contributions of perforin-dependent versus Fas-mediated pathways in lysis by NK and T cells, J Immunol, issue.8, pp.161-3957, 1998.

J. K. Lee, IFN-??-Dependent Delay of In Vivo Tumor Progression by Fas Overexpression on Murine Renal Cancer Cells, The Journal of Immunology, vol.164, issue.1, pp.231-240, 2000.
DOI : 10.4049/jimmunol.164.1.231

N. Gordon, Fas Expression in Lung Metastasis From Osteosarcoma Patients, Journal of Pediatric Hematology/Oncology, vol.27, issue.11, pp.611-616, 2005.
DOI : 10.1097/01.mph.0000188112.42576.df

L. L. Worth, Fas expression inversely correlates with metastatic potential in osteosarcoma cells, Oncology Reports, vol.9, issue.4, pp.823-830, 2002.
DOI : 10.3892/or.9.4.823

M. E. Peter, The CD95 Receptor: Apoptosis Revisited, Cell, vol.129, issue.3, pp.447-50, 2007.
DOI : 10.1016/j.cell.2007.04.031

URL : https://hal.archives-ouvertes.fr/hal-00318978

L. Chen, CD95 promotes tumour growth, Nature, issue.7297, pp.465-492, 2010.
DOI : 10.1038/nature09897

A. Strasser, P. J. Jost, and S. Nagata, The Many Roles of FAS Receptor Signaling in the Immune System, Immunity, vol.30, issue.2, pp.180-92, 2009.
DOI : 10.1016/j.immuni.2009.01.001

F. H. Igney and P. H. Krammer, DEATH AND ANTI-DEATH: TUMOUR RESISTANCE TO APOPTOSIS, Nature Reviews Cancer, vol.2, issue.4, pp.277-88, 2002.
DOI : 10.1038/nrc776

R. Gorlick, Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary, Clin Cancer Res, issue.915, pp.5442-53, 2003.

N. V. Koshkina, Fas-Negative Osteosarcoma Tumor Cells Are Selected during Metastasis to the Lungs: The Role of the Fas Pathway in the Metastatic Process of Osteosarcoma, Molecular Cancer Research, vol.5, issue.10, pp.991-1000, 2007.
DOI : 10.1158/1541-7786.MCR-07-0007

E. A. Lafleur, Interleukin (IL)-12 and IL-12 gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells, Cancer Res, issue.10, pp.61-4066, 2001.

E. A. Lafleur, Increased Fas Expression Reduces the Metastatic Potential of Human Osteosarcoma Cells, Clinical Cancer Research, vol.10, issue.23, pp.8114-8123, 2004.
DOI : 10.1158/1078-0432.CCR-04-0353

Z. Zhou, Interleukin-12 Up-Regulates Fas Expression in Human Osteosarcoma and Ewing's Sarcoma Cells by Enhancing Its Promoter Activity, Molecular Cancer Research, vol.3, issue.12, pp.685-91, 2005.
DOI : 10.1158/1541-7786.MCR-05-0092

X. Duan, Intranasal interleukin-12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases, Cancer, vol.58, issue.6, pp.1382-1390, 2006.
DOI : 10.1002/cncr.21744

K. Mori, K. Ando, and D. Heymann, Liposomal muramyl tripeptide phosphatidyl ethanolamine: a safe and effective agent against osteosarcoma pulmonary metastases, Expert Review of Anticancer Therapy, vol.8, issue.2, pp.151-160, 2008.
DOI : 10.1586/14737140.8.2.151

S. Lebel-binay, Interleukin-18: biological properties and clinical implications, Eur Cytokine Netw, vol.11, issue.1, pp.15-26, 2000.

J. Golab, Interleukin 18--interferon gamma inducing factor--a novel player in tumour immunotherapy? Cytokine, pp.332-340, 2000.

R. Cao, Interleukin-18 acts as an angiogenesis and tumor suppressor, FASEB J, vol.13, issue.15, pp.2195-202, 1999.

T. Ohtsuki, Interleukin 18 enhances Fas ligand expression and induces apoptosis in Fasexpressing human myelomonocytic KG-1 cells, Anticancer Res, issue.5A, pp.17-3253, 1997.

Y. Nakamura, Effect of interleukin-18 on metastasis of mouse osteosarcoma cells, Cancer Immunology, Immunotherapy, vol.9, issue.9, pp.1151-1159, 2006.
DOI : 10.1007/s00262-005-0097-3

N. Yamada, Immunotherapy with Interleukin-18 in Combination with Preoperative Chemotherapy with Ifosfamide Effectively Inhibits Postoperative Progression of Pulmonary Metastases in a Mouse Osteosarcoma Model, Tumor Biology, vol.30, issue.4, pp.176-84, 2009.
DOI : 10.1159/000236410

N. Boudreau, Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix, Science, vol.267, issue.5199, pp.891-894, 1995.
DOI : 10.1126/science.7531366

J. Grossmann, Apoptotic signaling during initiation of detachment-induced apoptosis ("anoikis") of primary human intestinal epithelial cells, Cell Growth Differ, vol.12, issue.3, pp.147-55, 2001.

S. M. Frisch and R. A. Screaton, Anoikis mechanisms, Current Opinion in Cell Biology, vol.13, issue.5, pp.555-62, 2001.
DOI : 10.1016/S0955-0674(00)00251-9

C. M. Diaz-montero and B. W. Mcintyre, Acquisition of anoikis resistance in human osteosarcoma cells, European Journal of Cancer, vol.39, issue.16, pp.39-2395, 2003.
DOI : 10.1016/S0959-8049(03)00575-6

L. A. Liotta and E. Kohn, Anoikis: Cancer and the homeless cell, Nature, vol.58, issue.7003, pp.430-973, 2004.
DOI : 10.1074/jbc.M404115200

P. Mehlen and A. Puisieux, Metastasis: a question of life or death, Nature Reviews Cancer, vol.5, issue.6, pp.449-58, 2006.
DOI : 10.1038/nrc1886

L. Trusolino, A. Bertotti, and P. M. Comoglio, A Signaling Adapter Function for ??6??4 Integrin in the Control of HGF-Dependent Invasive Growth, Cell, vol.107, issue.5, pp.643-54, 2001.
DOI : 10.1016/S0092-8674(01)00567-0

S. N. Nikolopoulos, Integrin ??4 signaling promotes tumor angiogenesis, Cancer Cell, vol.6, issue.5, pp.471-83, 2004.
DOI : 10.1016/j.ccr.2004.09.029

W. Guo, ??4 Integrin Amplifies ErbB2 Signaling to Promote Mammary Tumorigenesis, Cell, vol.126, issue.3, pp.489-502, 2006.
DOI : 10.1016/j.cell.2006.05.047

X. Wan, Beta4 integrin promotes osteosarcoma metastasis and interacts with ezrin, Oncogene, vol.4, issue.38, pp.3401-3412, 2009.
DOI : 10.1158/0008-5472.CAN-04-3135

P. Chiarugi and E. Giannoni, Anoikis: A necessary death program for anchorage-dependent cells, Biochemical Pharmacology, vol.76, issue.11, pp.76-1352, 2008.
DOI : 10.1016/j.bcp.2008.07.023

S. M. Janes and F. M. Watt, Switch from ??v??5 to ??v??6 integrin expression protects squamous cell carcinomas from anoikis, The Journal of Cell Biology, vol.105, issue.3, pp.419-450, 2004.
DOI : 10.1093/emboj/cdf399

R. V. Stan, Structure of caveolae, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1746, issue.3, pp.1746-334, 2005.
DOI : 10.1016/j.bbamcr.2005.08.008

K. G. Rothberg, Caveolin, a protein component of caveolae membrane coats, Cell, vol.68, issue.4, pp.673-82, 1992.
DOI : 10.1016/0092-8674(92)90143-Z

K. R. Solomon, Caveolin-Enriched Membrane Signaling Complexes in Human and Murine Osteoblasts, Journal of Bone and Mineral Research, vol.135, issue.4, pp.15-2380, 2000.
DOI : 10.1359/jbmr.2000.15.12.2380

L. Cantiani, Caveolin-1 Reduces Osteosarcoma Metastases by Inhibiting c-Src Activity and Met Signaling, Cancer Research, vol.67, issue.16, pp.67-7675, 2007.
DOI : 10.1158/0008-5472.CAN-06-4697

A. B. Al-mehdi, Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis, Nature Medicine, vol.13, issue.1, pp.100-102, 2000.
DOI : 10.1038/sj.onc.1202235

G. M. Jeffree, C. H. Price, and H. A. Sissons, The metastatic patterns of osteosarcoma, British Journal of Cancer, vol.32, issue.1, pp.87-107, 1975.
DOI : 10.1038/bjc.1975.136

F. Lin, Relationships between levels of CXCR4 and VEGF and blood-borne metastasis and survival in patients with osteosarcoma, Medical Oncology, vol.29, issue.2, pp.649-53, 2011.
DOI : 10.1007/s12032-010-9493-4

C. Laverdiere, Messenger RNA Expression Levels of CXCR4 Correlate with Metastatic Behavior and Outcome in Patients with Osteosarcoma, Clinical Cancer Research, vol.11, issue.7, pp.2561-2568, 2005.
DOI : 10.1158/1078-0432.CCR-04-1089

C. Y. Huang, Stromal cell-derived factor-1/CXCR4 enhanced motility of human osteosarcoma cells involves MEK1/2, ERK and NF-??B-dependent pathways, Journal of Cellular Physiology, vol.12, issue.1, pp.204-216, 2009.
DOI : 10.1002/jcp.21846

P. M. Murphy, Chemokines and the Molecular Basis of Cancer Metastasis, New England Journal of Medicine, vol.345, issue.11, pp.345-833, 2001.
DOI : 10.1056/NEJM200109133451113

A. Muller, Involvement of chemokine receptors in breast cancer metastasis, Nature, issue.6824, pp.410-50, 2001.

T. Murakami, Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells, Cancer Res, issue.24, pp.62-7328, 2002.

C. J. Scotton, Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer, Cancer Res, issue.20, pp.62-5930, 2002.

E. Pradelli, Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs, International Journal of Cancer, vol.176, issue.11, pp.2586-94, 2009.
DOI : 10.1002/ijc.24665

F. De-nigris, Deletion of Yin Yang 1 Protein in Osteosarcoma Cells on Cell Invasion and CXCR4/Angiogenesis and Metastasis, Cancer Research, vol.68, issue.6, pp.68-1797, 2008.
DOI : 10.1158/0008-5472.CAN-07-5582

M. M. Robledo, Expression of Functional Chemokine Receptors CXCR3 and CXCR4 on Human Melanoma Cells, Journal of Biological Chemistry, vol.276, issue.48, pp.276-45098, 2001.
DOI : 10.1074/jbc.M106912200

D. Jones, The chemokine receptor CXCR3 is expressed in a subset of B-cell lymphomas and is a marker of B-cell chronic lymphocytic leukemia, Blood, issue.2, pp.95-627, 2000.

L. Goldberg-bittman, The expression of the chemokine receptor CXCR3 and its ligand, CXCL10, in human breast adenocarcinoma cell lines, Immunology Letters, vol.92, issue.1-2, pp.171-179, 2004.
DOI : 10.1016/j.imlet.2003.10.020

P. Mangeat, C. Roy, and M. Martin, ERM proteins in cell adhesion and membrane dynamics, Trends in Cell Biology, vol.9, issue.5, pp.187-92, 1999.
DOI : 10.1016/S0962-8924(99)01544-5

M. Hirao, Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway, The Journal of Cell Biology, vol.135, issue.1, pp.37-51, 1996.
DOI : 10.1083/jcb.135.1.37

A. Gautreau, Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway, Proceedings of the National Academy of Sciences, vol.96, issue.13, pp.96-7300, 1999.
DOI : 10.1073/pnas.96.13.7300

K. W. Hunter, Ezrin, a key component in tumor metastasis, Trends in Molecular Medicine, vol.10, issue.5, pp.201-205, 2004.
DOI : 10.1016/j.molmed.2004.03.001

S. Ilmonen, Ezrin in primary cutaneous melanoma, Modern Pathology, vol.258, issue.4, pp.503-513, 2005.
DOI : 10.1038/modpathol.3800300

W. H. Weng, Prognostic Impact of Immunohistochemical Expression of Ezrin in Highly Malignant Soft Tissue Sarcomas, Clinical Cancer Research, vol.11, issue.17, pp.6198-204, 2005.
DOI : 10.1158/1078-0432.CCR-05-0548

C. Khanna, The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis, Nature Medicine, vol.10, issue.2, pp.182-188, 2004.
DOI : 10.1038/nm982

L. Ren, The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC, Oncogene, vol.58, issue.6, pp.792-802, 2009.
DOI : 10.1152/ajpcell.00111.2007

C. Khanna, Metastasis-associated differences in gene expression in a murine model of osteosarcoma, Cancer Res, issue.9, pp.61-3750, 2001.

S. Ikeda, -1 Oncogenes in a Human Osteosarcoma, Japanese Journal of Cancer Research, vol.83, issue.1, pp.6-9, 1989.
DOI : 10.1111/j.1349-7006.1989.tb02236.x

URL : https://hal.archives-ouvertes.fr/hal-01208515

S. M. Wilhelm, BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis, Cancer Research, vol.64, issue.19, pp.64-7099, 2004.
DOI : 10.1158/0008-5472.CAN-04-1443

Y. Pignochino, Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways, Molecular Cancer, vol.8, issue.1, p.118, 2009.
DOI : 10.1186/1476-4598-8-118

V. Hesse, Insulin-like growth factor I correlations to changes of the hormonal status in puberty and age, Experimental and Clinical Endocrinology & Diabetes, vol.102, issue.04, pp.289-98, 1994.
DOI : 10.1055/s-0029-1211294

N. Kawai, Serum Free Insulin-Like Growth Factor I (IGF-I), Total IGF-I, and IGF-Binding Protein-3 Concentrations in Normal Children and Children with Growth Hormone Deficiency, Journal of Clinical Endocrinology & Metabolism, vol.84, issue.1, pp.82-91, 1999.
DOI : 10.1210/jc.84.1.82

N. Herzlieb, Insulin-like growth factor-I inhibits the progression of human U-2 OS osteosarcoma cells towards programmed cell death through interaction with the IGF-I receptor, Cell Mol Biol, vol.46, issue.1, pp.71-78, 2000.

C. C. Kappel, Human osteosarcoma cell lines are dependent on insulin-like growth factor I for in vitro growth, Cancer Res, issue.10, pp.54-2803, 1994.

M. Pollak, Inhibition of Metastatic Behavior of Murine Osteosarcoma by Hypophysectomy, JNCI Journal of the National Cancer Institute, vol.84, issue.12, pp.966-71, 1992.
DOI : 10.1093/jnci/84.12.966

P. J. Mansky, Treatment of Metastatic Osteosarcoma With the Somatostatin Analog OncoLar: Significant Reduction of Insulin-Like Growth Factor-1 Serum Levels, Journal of Pediatric Hematology/Oncology, vol.24, issue.6, pp.24-440, 2002.
DOI : 10.1097/00043426-200208000-00007

C. Khanna, A randomized controlled trial of octreotide pamoate long-acting release and carboplatin versus carboplatin alone in dogs with naturally occurring osteosarcoma: evaluation of insulin-like growth factor suppression and chemotherapy, Clin Cancer Res, vol.8, issue.7, pp.2406-2418, 2002.

Y. H. Wang, Lentivirus-mediated RNAi knockdown of insulin-like growth factor-1 receptor inhibits growth, reduces invasion, and enhances radiosensitivity in human osteosarcoma cells, Molecular and Cellular Biochemistry, vol.12, issue.1-2, pp.257-66, 2009.
DOI : 10.1007/s11010-009-0064-y

Y. H. Wang, Lentivirus-mediated shRNA targeting insulin-like growth factor-1 receptor (IGF-1R) enhances chemosensitivity of osteosarcoma cells in vitro and in vivo, Molecular and Cellular Biochemistry, vol.82, issue.1-2, pp.225-258, 2010.
DOI : 10.1007/s11010-010-0453-2

E. A. Kolb, Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF- 1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer, pp.50-1190, 2008.

E. A. Kolb, R1507, a fully human monoclonal antibody targeting IGF-1R, is effective alone and in combination with rapamycin in inhibiting growth of osteosarcoma xenografts. Pediatr Blood Cancer, pp.67-75, 2010.

Y. H. Wang, Increased expression of insulin-like growth factor-1 receptor is correlated with tumor metastasis and prognosis in patients with osteosarcoma, Journal of Surgical Oncology, vol.39, issue.3, 2011.
DOI : 10.1002/jso.22077

K. Pantel and R. H. Brakenhoff, Dissecting the metastatic cascade, Nature Reviews Cancer, vol.19, issue.6, pp.448-56, 2004.
DOI : 10.1016/S0140-6736(98)10175-7

J. A. Aguirre-ghiso, Models, mechanisms and clinical evidence for cancer dormancy, Nature Reviews Cancer, vol.20, issue.11, pp.834-880, 2007.
DOI : 10.1038/nrc2256

G. N. Naumov, Ineffectiveness of Doxorubicin Treatment on Solitary Dormant Mammary Carcinoma Cells or Late-developing Metastases, Breast Cancer Research and Treatment, vol.2, issue.3, pp.199-206, 2003.
DOI : 10.1023/B:BREA.0000004377.12288.3c

L. Holmgren, M. S. Reilly, and J. Folkman, Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression, Nature Medicine, vol.218, issue.2, pp.149-53, 1995.
DOI : 10.1016/0022-3468(93)90246-H

H. Wikman, R. Vessella, and K. Pantel, Cancer micrometastasis and tumour dormancy???, APMIS, vol.8, issue.6, pp.754-70, 2008.
DOI : 10.1111/j.1600-0463.2008.01033.x

G. N. Naumov, A Model of Human Tumor Dormancy: An Angiogenic Switch From the Nonangiogenic Phenotype, JNCI Journal of the National Cancer Institute, vol.98, issue.5, pp.98-316, 2006.
DOI : 10.1093/jnci/djj068