Multifaceted population structure and reproductive strategy in Leishmania donovani complex in one Sudanese village.

Virginie Rougeron, Thierry de Meeüs, Mallorie Hide, Georges Le Falher, Bruno Bucheton, Jacques Dereure, Sayda El-Safi, Alain Dessein, Anne-Laure Bañuls

To cite this version:

Virginie Rougeron, Thierry de Meeüs, Mallorie Hide, Georges Le Falher, Bruno Bucheton, et al.. Multifaceted population structure and reproductive strategy in Leishmania donovani complex in one Sudanese village.. PLoS Neglected Tropical Diseases, Public Library of Science, 2011, 5 (12), pp.e1448. 10.1371/journal.pntd.0001448. inserm-00691457

HAL Id: inserm-00691457
https://www.hal.inserm.fr/inserm-00691457
Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Multifaceted Population Structure and Reproductive Strategy in *Leishmania donovani* Complex in One Sudanese Village

Virginie Rougeron1,5, Thierry De Meeûs2,3,9, Mallorie Hide1, Georges Le Falher4, Bruno Bucheton2, Jacques Dereure1,5, Sayda H. El-Safi6, Alain Dessein7, Anne-Laure Bañuls1

1 Laboratoire MIVEGEC (UMR IRD 224-CNRS 5290-Université Montpellier 1), Montpellier, France, 2 UMR 177 IRD-CIRAD, Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso, Burkina-Faso, 3 CNRS, Délégation Languedoc-Roussillon, Montpellier, France, 4 Centre Hospitalier, Gui de Chauliac, Montpellier, France, 5 Centre Hospitalier Universitaire Service de Parasitologie - Mycologie, Montpellier, France, 6 Department of Microbiology and Parasitology, Faculty of Medicine, Khartoum University, Khartoum, Sudan, 7 Université de la Méditerranée - INSERM UMR 906, Marseille, France

Abstract

Leishmania species of the subgenus *Leishmania* and especially *L. donovani* are responsible for a large proportion of visceral leishmaniasis cases. The debate on the mode of reproduction and population structure of *Leishmania* parasites remains opened. It has been suggested that *Leishmania* parasites could alternate different modes of reproduction, more particularly clonality and frequent recombinations either between related individuals (endogamy) or between unrelated individuals (outcrossing) within strongly isolated subpopulations. To determine whether this assumption is generalized to other species, a population genetics analysis within *Leishmania donovani* complex strains was conducted within a single village. The results suggest that a mixed-mating reproduction system exists, an important heterogeneity of subsamples and the coexistence of several genetic entities in Sudanese *L. donovani*. Indeed, results showed significant genetic differentiation between the three taxa (*L. donovani*, *L. infantum* and *L. archibaldi*) and between the human and canine strains of such taxa, suggesting that there may be different imbricated transmission cycles involving either dogs or humans. Results also are in agreement with an almost strict specificity of *L. donovani* stricto sensu to human hosts. This empirical study demonstrates the complexity of population structure in the genus *Leishmania* and the need to pursue such kind of analyses at the smallest possible spatio-temporal and ecological scales.

Editor: Hecmni Louzir, Institut Pasteur de Tunis, Tunisia

Received March 3, 2011; Accepted November 6, 2011; Published December 20, 2011

Copyright: © 2011 Rougeron et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors thank the French National Reference Center of Leishmania for providing the samples. They are grateful to the Institut de Recherche pour le Développement and the Centre National de la Recherche Scientifique for their support. This study was also supported by a French National Project, ANR 06-SEST-20 IAE. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rougeron.virginie@gmail.com

These authors contributed equally to this work.

Introduction

Leishmaniasis are worldwide vector-borne diseases of humans and domestic animals, caused by protozoan parasites of the genus *Leishmania*. These parasitic infections are a serious public health problem, with about 350 million persons at risk and 2,357,000 new cases per year [1]. The genus *Leishmania* totals approximately 20 described species causing human infections (reviewed in [2]) with a wide variety of clinical symptoms: cutaneous, visceral, mucocutaneous, mucosal and post-kala-azar dermal (PKDL) leishmaniasis. Visceral leishmaniasis is the most severe form of the disease, which can be lethal if it goes untreated. It is the most widespread leishmaniasis form, especially in India, Bangladesh, Nepal, Sudan, Ethiopia and Brazil [1,3,4]. In this study, we focused on human and canine samples collected in Sudan, where visceral leishmaniasis is endemic in the eastern and southern parts of the country and has claimed the lives of thousands of people [5].

Visceral leishmaniasis is mainly caused by species from the *Leishmania donovani* complex [6]. Multilocus enzyme electrophoresis (MLEE) studies generated the description of three different species in this complex: *L. donovani* in the Old World, *L. infantum* in the Old World and the New World (also named *L. chagasi* there), and *L. archibaldi* in Sudan and Ethiopia [7,8]. In Sudan, the taxonomic status of these three species has been challenged using several different molecular markers, such as random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP) and microsatellites [9,10]. On the basis of both sequencing and microsatellite analysis, Jamjoom et al. proposed that *Leishmania donovani* sensu lato was the only cause of visceral leishmaniasis in East Africa (the three species falling in one clade), including Sudan [11]. Lukes et al. [12], by a multifactorial genetic analysis that includes DNA sequences of protein-coding genes as well as noncoding segments, microsatellites, restriction-fragment length polymorphisms, and randomly amplified polymorphic DNAs, suggested that *Leishmania infantum* and *L. donovani* were the only recognized species of the *L. donovani* complex [12]. It was even recently suggested that the only valid name is *L. donovani* [13].
Materials and Methods

Study site, parasites, cultures and DNA extraction

A census of the village population was conducted by Bucheton et al. [24], making personal and clinical data available. From 1997 to 2000, 61 isolates of *Leishmania donovani* complex were collected and then cultured. We obtained the samples for this study from the “the French National Reference Center of *Leishmania*”, under the agreement of Dr. Alain Dessein.

The 61 strains from Sudan were isolated from dogs (ten strains) and humans (51 strains) and characterized using the MLEE technique by Dereeue et al. [25]. Thirty-three strains were identified as *L. donovani*, 17 strains as *L. infantum* and 11 strains as *L. archibaldi* (see supplementary data Table S1). Promastigotes were cultured at 26°C by weekly subpassages in RPMI 1640 medium, buffered with 25 mM HEPES, 2 mM NaHCO3 and supplemented with 20% heat-inactivated fetal calf serum, 2 mM glutamine, 100 U/ml penicillin and 100 μg/ml streptomycin. Cultures were harvested by centrifugation and stored at −80°C until DNA extraction. Genomic DNA was extracted using the DNeasy Blood and Tissues Kit (Qagen, Courtaboeuf, France), following the manufacturer’s recommendations.

Genotyping

The 20 microsatellite loci investigated (15 already published [26] and five developed in the laboratory) are listed in Supplementary data Table S1. The 61 strains (and M9702, as *L. chagasi* outgroup) under study were amplified according to the following conditions. Every 30-μL reaction mix was composed of 1 μL of each primer (10 μM), the forward being labelled, 100 ng template DNA, 0.9 μL dNTP mix (5 mM), 3 μL buffer 10× and 0.3 μL Taq Polymerase (Roche Diagnostics, 5 U/μL). Amplifications were carried out in a thermal cycler using the following reaction conditions: 35 cycles of 94°C for 30 s, annealing temperature of each locus (see Table 1) for 1 min, 72°C for 1 min and a final extension step of 72°C for 10 min. The reaction products were visualized on a 1.5% agarose gel stained with EZ Vision™ DNA Dye (Amresco). Fluorescence-labelled PCR products were sized on Applied Bystems Prism 310, with a Genesc 500 LIZ internal size standard. All 61 isolates were genotyped at all 20 loci.

Statistical analysis

Data were processed through Create V 1.1 [27] to convert the data for different usage. We mainly analysed data with Fstat Version 2.9.3.2 software (Goudet 2002, updated from Goudet [28]), which computes estimates and tests the significance of the following population genetics parameters. Genetic polymorphism was measured by the number of alleles per locus (N_a) and by Nei’s unbiased estimate of genetic diversity within subsamples H_s [29]. We estimated Wright’s F statistics [30] with Weir and Cockerham’s method [31]: F_IS measures the relative inbreeding of individuals due to the local non-random union of gametes in each subpopulation, and F_ST measures the relative inbreeding in subpopulations attributable to the subdivision of the total population into subpopulation of limited size. F_ST thus also measures genetic differentiation between subpopulations, F_IS ranges between −1 and 1: a negative value corresponds to an excess of heterozygotes, a positive value to heterozygote deficiency; 0 is expected under panmixia. The significance of the departure from 0 was tested by 10,000 randomisations of alleles within subpopulations (to test random mating) and individuals across subsamples (for differentiation). The statistic used for random mating (Hardy-Weinberg Equilibrium) testing was simply Weir
and Cockerham's estimator \(f (F_{ST} \text{ and } F_{IS}) \) For the genetic differentiation test, we used the log likelihood ratio \(G \)-based test of Goudet et al. [32] summed over all loci. Confidence intervals were estimated by bootstrapping over loci or jack-knifing over populations with described in De Mecımı et al. [33].

Genetic diversity, as measured by Nei's \(H_{s} \), can lower the maximum possible value for \(F_{ST} \). According to classical formulation (e.g. \[34\], \(F_{ST} = (Q_{b} - Q_{g})/(1 - Q_{g}) \), where \(Q_{b} \) is the probability to sample twice the same allele in a subpopulation and \(Q_{g} \) is the probability to sample twice the same allele in different subpopulations. If a population was totally subdivided, then the probability to sample twice the same allele in two different subpopulations should be null and thus \(F_{ST} \) should be equal to the probability to sample twice the same allele in a subpopulation \(Q_{b} \). \(H_{s} \), being the probability to sample two alleles that are different hence \(Q_{b} = 1 - H_{s} \). The maximum possible value for \(F_{ST} \) in a sample with a given \(H_{s} \) can thus be estimated as \(1 - H_{s} \) and a corrected version of \(F_{ST} \) as \(F_{ST}^{*} = F_{ST}/(1 - H_{s}) \) [33,35].

Data were heterogeneous regarding Leishmania species (as recognized by MLEE typing), year of sampling and host species. To assess the possible contribution of these factors to genetic partitioning (Wahlund effect), we compared \(F_{IS} \) obtained with four different sampling strategies. The first sampling strategy considered each Leishmania species-year of sampling–host species combinations as different subsamples (14 subsamples, “All separated” strategy). The second strategy ignored the Leishmania species distinction (six subsamples, “Species fused” strategy). The third strategy ignored the year of sampling (six subsamples, “Years fused” strategy) and the fourth one ignored the host species (10 subsamples, “Hosts fused” strategy). For significant difference testing, we undertook planned paired Wilcoxon signed rank tests between “All separated” and each of the other three strategies ordered as above with sequential Bonferroni correction (multiplying the \(P \)-values by 3, 2 and 1, respectively). Unilateral (“All separated” has a smaller \(F_{IS} \) than the other three strategies) Wilcoxon signed rank tests were undertaken under \(R \) [36].

Differentiation between the relevant units controlled for the other factors were then undertaken with paired subsample differentiation tests \(F_{ST} \) estimation and \(G \)-based randomisation test). When two values were obtained for the same type of differentiation (e.g. differentiation between \(L. \) archibaldi and \(L. \) infantum in 1997 and 1998), these values were combined with an unweighted mean for \(F_{ST} \) (e.g. over years) and Stouffer's \(\text{Z} \) test (Whitlock, 2005) for \(P \)-values as recommended [37].

Linkage disequilibrium between pairs of loci (non-random association of alleles at different loci) was assessed with a randomisation test (genotypes at two loci are associated at random a number of times) using Fstat software Version 2.9.3.2 software (Goudet 2002, updated from Goudet [28]). The statistic used was the log likelihood ratio \(G \) summed over all subpopulations, known to be more powerful than other combinatorial procedures [37]. Because there are as many tests as locus pairs tested (here \(15 \times 14/2 \)).
distribution identified by BAPS and noted genetic structure. To obtain the best distribution of the entire software uses stochastic optimization to infer the posterior mode of events of aneuploidy (for which we would have also expected individuals with no alleles, three or four alleles). The genotypes obtained are presented in supplemental Table S1. The data showed a low level of genetic diversity, with an average number of alleles per locus of 4.23±1.74, ranging from 2 (LIST7026, LIST7028 and LIST7030 to 8 (LIST7025) and a mean genetic diversity $H_E = 0.475±0.148$ (Table 1).

Phylogenetic analysis and genetic differentiation

The dendrogram, based on 20 polymorphic microsatellite loci, represented in Figure 1 underlined two main clusters. Cluster A (36% bootstraps) regroups strains from L. infantum and L. donovani. Cluster B (sustained by a bootstrap of 32%) corresponded to L. archibaldi taxon and three L. infantum from dogs. It has to be noticed that other studies have observed, using microsatellite method, small bootstrap for large clusters and important bootstrap values only for small clusters for L. braziliensis [45] and L. infantum [46].

Fst comparisons between “All separated” strategy and the three others gave significant differences, as illustrated in Figure 2, meaning each factor, Leishmania species, year of sampling and host species in order of importance, displays a significant signature on the apportioning of genetic information. Consequently, each Leishmania species of each year and each host species must be considered as separate subsamples. It has to be noticed that the significant results we obtained cannot come from an insufficient number of samples. Indeed, the significant differences evidenced are statistically valid and ignoring it might lead to overlook important ecological processes currently involved in the population biology of these Leishmania “lineages”. Moreover, these differentiations were confirmed by paired subsample differentiation tests, as indicated in Table 2. All Leishmania species are genetically different. Species differentiation seems very pronounced between L. donovani and L. archibaldi (F_{ST}~0.767) and smaller for the two other pairs (F_{ST}~0.2–0.3) (Table 2). Temporal differentiation seems only to affect L. donovani in humans. Considering the host origin, a weak and marginally non-significant differentiation is found between human and dog strains for L. archibaldi, while a strong differentiation seems to affect L. infantum strains between the two host species (Table 2).

Clinical forms (visceral versus PKDL in humans, see Supplementary Table S1) could only be compared for L. donovani in 1997 and 1998 where no differentiation could be evidenced (F_{ST}~0, P-value>0.4 in both cases). Consequently, clinical forms were not considered further in our analyses.

Prevalence comparisons

The data’s prevalence from Dereure et al. [25] was compared for each Leishmania species between humans and dogs (50 human strains and 20 dog strains). The results, presented in Table 3, show that L. donovani is clearly found in humans rather than in dogs (P-value = 0.001), that L. infantum displays a tendency to infect dogs more often (P-value = 0.04), while the difference is not significant for L. archibaldi (P-value = 0.2). If Bonferroni adjusted, only L. donovani test stays significant (P-value = 0.003).

Linkage disequilibrium study

This analysis was undertaken over all the data but considering each Leishmania species, year of sampling and host species combination as a distinct subsample. This provided 19 locus pairs out of 190 tests in significant linkage. This is far above the 5% expected under the null hypothesis (P-value = 0.0001). These significant tests involved 18 of the 20 loci. Within each Leishmania species, small subsample sizes limited the power of the test. For L. archibaldi (very small subsamples of four and seven individuals in dogs and human hosts respectively) only five tests out of 190 were
Reproductive Strategy in *Leishmania donovani* s.l.

Cluster A

1. L. *donovani* from humans
2. L. *infantum* and L. *donovani* from humans
3. L. *infantum* from humans
4. L. *donovani* from humans

Cluster B

1. L. *archibaldi* from humans
2. L. *infantum* from dogs
3. L. *archibaldi* from humans and dogs
significant (P-value $= 1$). In $L. \text{donovani}$ 22 tests were significant (P-value $= 0.0003$) and in $L. \text{infantum}$ 19 tests were significant (P-value $= 0.0034$). There is thus a global linkage at a genome-wide scale in the three $Leishmania$ species populations.

Genetic diversity and heterozygote deficiency within $Leishmania$ species

For each $Leishmania$ species, a global and highly significant heterozygote deficit, highly variable across loci, was observed (Figure 3). These heterozygote deficits significantly decrease (P-values < 0.005) in the best partitions found by BAPS for the two species for which such analyses could be done ($L. \text{donovani}$ and $L. \text{infantum}$) (Table 4 and Figure 4). Simulations, undertaken using the software EasyPop, provided patterns convergent with the pattern observed for some parameter sets only for very high clonal rates (minimum $\epsilon = 0.99$) and strong Wahlund effects (pooling one representative of each strongly isolated subpopulation into one subsample). Nevertheless, in each of these simulations, fairly numerous multilocus genotypes (MLGs) appeared, in contrast to the real data, where on the whole data set only two MLGs (2 observations of two samples presented the same multilocus genotypes) were observed. Consequently, something else is occurring. Finally, using the NJ Tree pattern of Figure 1, keeping only $L. \text{donovani}$ strains belonging to most homogeneous clusters (no leaf longer than 0.1, see Figure 1) and subdividing it into subclusters belonging to the same year indeed produced lower $F_{IS} \approx 0.27$, but still with a very strong variance across loci (ranging from -0.1 to 0.7), no significant linkage disequilibrium and a reasonable proportion of MLGs (one repeated twice and a second repeated three times) but very small subsample sizes. It has to be noticed, that the global same topology of the NJ tree using Cavalli Sforza distances has been obtained using shared allele distances,

Figure 1. Genetic distance relationships among 61 strains of the $Leishmania \text{donovani}$ complex in Sudan. Neighbor-Joining tree depicting genetic distance relationships based on Cavalli-Sforza's chord distances among 61 strains of the $Leishmania \text{donovani}$ complex based on 20 polymorphic microsatellite loci. $Leishmania \text{chagasi}$ M9702 reference strain was used as outgroup. Values on the nodes represent the percentage of bootstrap replicates over loci ($n = 500$). Samples from the species $L. \text{archibaldi}$, $L. \text{donovani}$ and $L. \text{infantum}$ are noted “L. a.”, “L. d.”, and “L. i.” respectively. Hosts are noted “H. s.” for Homo sapiens and “C. f.” for Canis familiaris. The majority of $L. \text{archibaldi}$ strains are grouped in cluster B. Cluster A contains almost all the $L. \text{donovani}$ strains. $L. \text{infantum}$ strains are distributed in the two clusters. The single $L. \text{donovani}$ strain (LEM3785) genotyped from a dog is noted “***”.

doi:10.1371/journal.pntd.0001448.g001

Figure 2. F_{IS} estimations between four sampling strategies. Comparison of F_{IS} estimated between the “All separated” strategy and the other three sampling strategies as defined in the text. Wilcoxon signed rank test P-values between pairs of strategies, as indicated by double arrows, are provided with the corresponding sequential Bonferroni corrected value in brackets. The 95% confidence intervals were obtained by bootstrapping over loci.

doi:10.1371/journal.pntd.0001448.g002
and also the Minimum Evolution tree using either Cavalli Sforza heterogeneities within and between genetically related cells (endogamy) resulting in high s.l. [47], or other Trypanosomatidae such as Crithidia bombi [48]) (similar to other kinetoplastid parasites, such as parasites could alternate different modes of reproduction: clonality from Wahlund effects (mixture of differentiated true populations), because strains were collected at too large spatial and/or temporal scales. To prevent such possible biases, we selected a sample of L. donovani, collected at a village scale, reducing the risk of hidden substructuring.

In this Sudanese village, the validity of the distinction between L. donovani sensu stricto, L. archibaldi and L. infantum, be it a true species, a subspecies or any other taxonomic level, is supported by our results, in contradiction with recent papers [9,11,13,49]. As shown here, ignoring such delimitations dangerously biases genetic data interpretation. It remains that taxonomic distinction based on isoenzymes does not seem very clear as can be seen from Figure 1 and it would be worth trying other kind of markers as MultiLocus Sequencing Typing or MultiLocus Sequencing Analysis [50] to clarify this issue.

Another significant subdivision arose between dogs and human hosts, particularly regarding L. infantum and to a much lesser extent L. archibaldi. Gene flow (gene flow) appears much reduced between dogs and human hosts for L. infantum and two different kinds of cycles must be present here, involving probably different vector’s species and reservoirs. For L. archibaldi the difference is much less obvious but may be as a result of modest sampling sizes. In L. donovani, the greater specificity of strains to human (Table 3) and the resulting reduced number of strains found in dog did not allow for such testing. Nevertheless, the single L. donovani strain (LEM3785) genotyped from a dog did not show any originality as regard to its human counterparts (Figure 1). This apparent strong specificity for human hosts would mean, at least for L. donovani, that dogs are not a significant reservoir for these pathogens, in agreement with the anthropogenic feature of this species.

Time also appeared as a significant subdividing factor but only for L. donovani. The simplest interpretation being that, as patient once diagnosed are treated, a drop in subpopulation size may occur in the following year, thus leading to a genetic differentiation as a result of a bottleneck or of the replacement of empty places by other strains. Genetic diversities being not significantly different between 1998 and 1999 (Wilcoxon signed rank test, P-value = 0.27), the second hypothesis appears more likely.
Failing to consider all the above factors as relevant resulted in a very odd F_{IS} distribution as illustrated by Supplementary Figure S1.

Our data, and especially the NJTree approach, also suggest that hybridization between the different taxa is not impossible, though rare enough to prevent homogenization, but frequent enough to enhance heterogeneity within each cluster that could be defined.

An interesting point to notice is the absence of genetic differentiation obtained between L. donovani clinical forms (visceral leishmaniasis and PKDL, F_{ST}~0, P-value>0 in 1997 and 1998). Indeed, this result could suggest that the development of PKDL in treated patients is more likely link to host’s factors than to parasite’s factors. This potential association between PKDL and host has already been suggested by Blackwell J.M.’s team. Indeed, results of this study proposed a genetic association between the polymorphism at IFNGR1 and the susceptibility of patients after treatments to PKDL (and not to visceral leishmaniasis) [51].

Regarding the reproductive strategy and population structure of these parasites, further studies should focus on the effect of individual hosts to detail the respective contribution of population differentiation as well as clonal, endogamic and outcrossing modes of reproduction in the genotypic distribution of these parasites. Nonetheless, clonality does not totally explain the strong variance across F_{IS} loci, that displayed a much wider range than what was observed for the much more homozygous L. braziliensis [21]. Our simulation approach suggested that obtaining the F_{IS} and its variance across loci with very few MLGs, as in the real data, was impossible to achieve. The existence of a strongly structured hierarchical meta-population, with for instance the individual hosts playing the role of micro-populations for the parasites, in combination with occasional gene flow between different genetically distant entities (species hybridizations) and/or different cycle types (zoonomics vs. anthroponotics), could explain the pattern observed on our microsatellite loci. However, as previously said, this requires further investigation. We cannot exclude the possible disturbing role played by gene conversion known to occur in Leishmania [52] though we do not favour much such a hypothesis. If gene conversion is a genome wide process in Leishmania (genomic conversion) we would have expected a much more homogeneous homozygosity across loci than what was observed. Some loci are indeed almost always homozygous while some others display substantial amounts of heterozygosity (Figure 3). If gene conversion is site specific, we would expect it to preferentially affect coding sequences and its surrounding more than non coding zones. A glance at the localisation in the chromosome of markers did not suggest that microsatellite markers situated closer to coding sequences were more prone to display positive F_{IS} than the other microsatellites. Moreover, even if the correlation between species is good, it can be seen that it is not perfect and that some loci with F_{IS}~1 in one species can display a fairly lower F_{IS} in another. This does not strongly support the site specific DNA conversion hypothesis. But here again, further studies would be worth being undertaken on that issue.

Null alleles are often encountered in population genetics studies. They may be frequent in allozymes [53,54] and in DNA markers such as microsatellites [55,56,57]. In our data, no blank has ever been observed in the genotypes (no missing data, i.e. all individuals were amplified at all loci), which, given the high homozygosity encountered (increased probability of blank homozygotes), makes the null allele explanation very unlikely.

Rarity of MLGs, variable but globally positive F_{IS} and strong heterogeneity within subpopulations seem to be the rule for L. donovani as such a pattern was already reported in Eastern Africa [19]. Such results suggest the existence of strongly differentiated hidden entities. A different pattern was found in L. donovani from the Indian subcontinent [58] where all loci appeared weakly polymorphic, dominated by a single MLG with a few variants at one locus and, in spatially and temporally homogeneous subpopulations no deviation from panmixia. Just as if this subcontinent had been colonised by one of the entities we are dealing with Africa.

The village Babar El Fugara is characterized by an epidemic context, with the occurrence of several epidemic episodes. The

Table 4. Description of the clusters identified using the software BAPS.

<table>
<thead>
<tr>
<th>Subsamples</th>
<th>Individuals per cluster</th>
<th>Number of clusters</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. donovani 1997</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.986</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.996</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. infantum Human hosts</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.813</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of clusters, their size and probability of best partition (P) during BAPS analyses of L. donovani samples in 1997 and 1998 and of L. infantum from human hosts (other subsamples were too small).

doi:10.1371/journal.pntd.0001448.t004

Figure 3. F_{IS} variation across loci and mean value for the three Leishmania species. The confidence intervals are the values obtained for dogs and humans for L. archibaldi and L. infantum and are minimum and maximum values obtained in 1997, 1998 or 1999 for L. donovani, except for F_{IS} over all loci (All*) where confidence intervals (CI) are the 95% CI obtained after bootstrap over the loci.

doi:10.1371/journal.pntd.0001448.g003

Figure 4. F_{IS} for L. donovani and L. infantum strains in the entire population and within subdivisions. These subdivisions have been identified by the software BAPS. The 95% confidence intervals were obtained by bootstrapping over loci. The decrease of F_{IS} in the subdivisions suggests a Wahlund effect.

doi:10.1371/journal.pntd.0001448.g004
genetic diversity revealed by our results is not due to the arrival of a new variant but more likely was already present. Indeed, during this epidemic, all the population have been exposed to the disease and only ⅓ develop visceral leishmaniasis. This observation means that the majority of the population is probably asymptomatic and contribute for the transmission [24]. In this context, this suggested the need to pursue research in order to identify which reservoir could be involved in the maintenance of the diversity and the transmission cycles (vectors or mammal reservoirs).

To conclude on this population genetics study within the L. donovani complex, it clearly appears that considering the whole sample as a single population was not adequate. In addition, our findings suggested that clonality may have a stronger impact on the L. donovani complex than on L. braziliensis. It also suggested that exploring the possible strong impact of the host individual (sandfly or mammal hosts) was worth trying and indeed represents a too often neglected factor in Leishmania population studies in particular and in pathogenic microbes in general [22,33,59,60,61]. These results demonstrate the need to pursue population genetics studies in Leishmania species from sampling designs that control maximum possible confounding factors. These parasites indeed seem to be subdivided at very narrow spatio-temporal and ecological (host) scales.

Supporting Information

Figure S1 F_{IS} for each of the loci in the entire population of L. donovani complex. There is a large heterozygote deficiency at each locus.

(TIF)

References