G. Bader, D. Betel, and C. Hogue, BIND: the Biomolecular Interaction Network Database, Nucleic Acids Research, vol.31, issue.1, pp.248-250, 2003.
DOI : 10.1093/nar/gkg056

URL : http://doi.org/10.1093/nar/29.1.242

S. Berger, J. Posner, and A. Ma-'ayan, Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases, BMC Bioinformatics, vol.8, issue.1, p.372, 2007.
DOI : 10.1186/1471-2105-8-372

C. Betancur, Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting, Brain Research, vol.1380, pp.42-77, 2011.
DOI : 10.1016/j.brainres.2010.11.078

URL : https://hal.archives-ouvertes.fr/inserm-00549873

T. Beuming, L. Skrabanek, M. Niv, P. Mukherjee, and H. Weinstein, PDZBase: a protein-protein interaction database for PDZ-domains, Bioinformatics, vol.21, issue.6, pp.827-828, 2005.
DOI : 10.1093/bioinformatics/bti098

E. Byvatov and G. Schneider, Support vector machine applications in bioinformatics, Appl Bioinformatics, vol.2, pp.67-77, 2003.

A. Chatr?aryamontri, A. Ceol, L. Palazzi, G. Nardelli, M. Schneider et al., MINT: the Molecular INTeraction database, Nucleic Acids Research, vol.35, issue.Database, pp.572-574, 2007.
DOI : 10.1093/nar/gkl950

J. Chen, B. Aronow, and A. Jegga, Disease candidate gene identification and prioritization using protein interaction networks, BMC Bioinformatics, vol.10, issue.1, p.73, 2009.
DOI : 10.1186/1471-2105-10-73

URL : http://doi.org/10.1186/1471-2105-10-73

A. Culhane, T. Schwarzl, R. Sultana, K. Picard, S. Picard et al., GeneSigDB--a curated database of gene expression signatures, Nucleic Acids Research, vol.38, issue.Database, pp.716-725, 2010.
DOI : 10.1093/nar/gkp1015

P. El?fishawy and M. State, The Genetics of Autism: Key Issues, Recent Findings, and Clinical Implications, Psychiatric Clinics of North America, vol.33, issue.1, pp.83-105, 2009.
DOI : 10.1016/j.psc.2009.12.002

R. Ewing, P. Chu, F. Elisma, H. Li, P. Taylor et al., Large-scale mapping of human protein???protein interactions by mass spectrometry, Molecular Systems Biology, vol.11, p.89, 2007.
DOI : 10.1038/msb4100134

S. Gilman, I. Iossifov, D. Levy, M. Ronemus, M. Wigler et al., Rare De Novo Variants Associated with Autism Implicate a Large Functional Network of Genes Involved in Formation and Function of Synapses, Neuron, vol.70, issue.5, pp.898-907, 2011.
DOI : 10.1016/j.neuron.2011.05.021

G. Gkoutos, E. Green, A. Mallon, J. Hancock, and D. Davidson, Using ontologies to describe mouse phenotypes, Genome Biology, vol.6, issue.1, p.8, 2004.
DOI : 10.1186/gb-2004-6-1-r8

H. Hermjakob, L. Montecchi?palazzi, C. Lewington, S. Mudali, S. Kerrien et al., IntAct: an open source molecular interaction database, Nucleic Acids Research, vol.32, issue.90001, pp.452-455, 2004.
DOI : 10.1093/nar/gkh052

URL : https://hal.archives-ouvertes.fr/hal-00306577

H. Jiang and W. Ching, Classifying DNA repair genes by kernel-based support vector machines, Bioinformation, vol.7, issue.5, pp.257-63, 2011.
DOI : 10.6026/97320630007257

M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa et al., KEGG for linking genomes to life and the environment, Nucleic Acids Research, vol.36, issue.Database, pp.480-484, 2008.
DOI : 10.1093/nar/gkm882

H. Kang, Y. Kawasawa, F. Cheng, Y. Zhu, X. Xu et al., Spatio-temporal transcriptome of the human brain, Nature, vol.88, issue.7370, pp.483-489, 2011.
DOI : 10.1038/nature10523

M. Kann, Advances in translational bioinformatics: computational approaches for the hunting of disease genes, Briefings in Bioinformatics, vol.11, issue.1, pp.96-110, 2009.
DOI : 10.1093/bib/bbp048

A. Lachmann and A. Ma-'ayan, KEA: kinase enrichment analysis, Bioinformatics, vol.25, issue.5, pp.684-686, 2009.
DOI : 10.1093/bioinformatics/btp026

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2647829

A. Lachmann and A. Ma-'ayan, Lists2Networks: Integrated analysis of gene/protein lists, BMC Bioinformatics, vol.11, issue.1, 2010.
DOI : 10.1186/1471-2105-11-87

A. Lachmann, H. Xu, J. Krishnan, S. Berger, A. Mazloom et al., ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments, Bioinformatics, vol.26, issue.19, pp.2438-2444, 2010.
DOI : 10.1093/bioinformatics/btq466

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944209

L. Li, K. Zhang, J. Lee, S. Cordes, D. Davis et al., Discovering cancer genes by integrating network and functional properties, BMC Medical Genomics, vol.68, issue.1, p.61, 2009.
DOI : 10.1158/0008-5472.CAN-07-3158

D. Lynn, G. Winsor, C. Chan, N. Richard, M. Laird et al., InnateDB: facilitating systems-level analyses of the mammalian innate immune response, Molecular Systems Biology, vol.36, p.218, 2008.
DOI : 10.1038/ni1087

A. Ma-'ayan, S. Jenkins, S. Neves, A. Hasseldine, E. Grace et al., Formation of Regulatory Patterns During Signal Propagation in a Mammalian Cellular Network, Science, vol.309, issue.5737, pp.1078-1083, 2005.
DOI : 10.1126/science.1108876

V. Matys, E. Fricke, R. Geffers, E. Gling, M. Haubrock et al., TRANSFAC(R): transcriptional regulation, from patterns to profiles, Nucleic Acids Research, vol.31, issue.1, pp.374-378, 2003.
DOI : 10.1093/nar/gkg108

H. Mewes, C. Amid, R. Arnold, D. Frishman, U. Guldener et al., MIPS: analysis and annotation of proteins from whole genomes, Nucleic Acids Research, vol.32, issue.90001, pp.41-44, 2004.
DOI : 10.1093/nar/gkh092

S. Navlakha and C. Kingsford, The power of protein interaction networks for associating genes with diseases, Bioinformatics, vol.26, issue.8, pp.1057-1063, 2010.
DOI : 10.1093/bioinformatics/btq076

M. Oti, B. Snel, M. Huynen, and H. Brunner, Predicting disease genes using protein-protein interactions, Journal of Medical Genetics, vol.43, issue.8, pp.691-698, 2006.
DOI : 10.1136/jmg.2006.041376

S. Peri, J. Navarro, T. Kristiansen, R. Amanchy, V. Surendranath et al., Human protein reference database as a discovery resource for proteomics, Nucleic Acids Research, vol.32, issue.90001, pp.497-501, 2004.
DOI : 10.1093/nar/gkh070

J. Rual, K. Venkatesan, T. Hao, T. Hirozane?kishikawa, A. Dricot et al., Towards a proteome-scale map of the human protein???protein interaction network, Nature, vol.23, issue.7062, pp.1173-1178, 2005.
DOI : 10.1126/science.1090100

Y. Sakai, C. Shaw, B. Dawson, D. Dugas, Z. Al?mohtaseb et al., Protein Interactome Reveals Converging Molecular Pathways Among Autism Disorders, Science Translational Medicine, vol.3, issue.86, pp.86-135, 2011.
DOI : 10.1126/scitranslmed.3002166

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169432

S. Sanders, A. Ercan?sencicek, V. Hus, R. Luo, M. Murtha et al., Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism, Multiple recurrent de novo CNVs, Including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism, pp.863-885, 2011.
DOI : 10.1016/j.neuron.2011.05.002

C. Stark, B. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz et al., BioGRID: a general repository for interaction datasets, Nucleic Acids Research, vol.34, issue.90001, pp.535-539, 2006.
DOI : 10.1093/nar/gkj109

U. Stelzl, U. Worm, M. Lalowski, C. Haenig, F. Brembeck et al., A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome, Cell, vol.122, issue.6, pp.957-968, 2005.
DOI : 10.1016/j.cell.2005.08.029

S. Topper, C. Ober, and S. Das, Exome sequencing and the genetics of intellectual disability, Clinical Genetics, vol.13, issue.2, pp.117-126, 2011.
DOI : 10.1111/j.1399-0004.2011.01720.x

I. Voineagu, X. Wang, P. Johnston, J. Lowe, Y. Tian et al., Transcriptomic analysis of autistic brain reveals convergent molecular pathology, Nature, vol.38, issue.7351, pp.380-384, 2011.
DOI : 10.1038/nature10110

I. Xenarios, D. Rice, L. Salwinski, M. Baron, E. Marcotte et al., DIP: the Database of Interacting Proteins, Nucleic Acids Research, vol.28, issue.1, pp.289-291, 2000.
DOI : 10.1093/nar/28.1.289

H. Xu, I. Lemischka, and A. Ma-'ayan, SVM classifier to predict genes important for self-renewal and pluripotency of mouse embryonic stem cells, BMC Systems Biology, vol.4, issue.1, p.173, 2010.
DOI : 10.1186/1752-0509-4-173

H. Yu, L. Tardivo, S. Tam, E. Weiner, F. Gebreab et al., Next-generation sequencing to generate interactome datasets, Nature Methods, vol.8, issue.6, pp.478-480, 2011.
DOI : 10.1101/gr.9.11.1128

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188388

W. Zhang, F. Sun, and R. Jiang, Integrating multiple protein-protein interaction networks to prioritize disease genes: a Bayesian regression approach, BMC Bioinformatics, vol.12, issue.Suppl 1, p.11, 2011.
DOI : 10.1186/1471-2105-12-S1-S11

M. Ziats and O. Rennert, Expression Profiling of Autism Candidate Genes during Human Brain Development Implicates Central Immune Signaling Pathways, PLoS ONE, vol.10, issue.9, p.24691, 2011.
DOI : 10.1371/journal.pone.0024691.s014